DOI QR코드

DOI QR Code

Suspension Polymerization of Thermally Expandable Microcapsules with Core-Shell Structure Using the SPG Emulsification Technique: Influence of Crosslinking Agents and Stabilizers

SPG 유화법을 사용하여 현탁중합한 코어-쉘 구조를 갖는 열팽창 마이크로캡슐 제조: 가교제 및 안정제의 영향

  • Bu, Ji Hyun (Department of Chemical Engineering, Inha University) ;
  • Kim, Yeongseon (Department of Chemical Engineering, Inha University) ;
  • Ha, Jin Uk (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Shim, Sang Eun (Department of Chemical Engineering, Inha University)
  • Received : 2014.05.26
  • Accepted : 2014.07.14
  • Published : 2015.01.25

Abstract

With aiming to prepare microcapsules having a particle size of $30-50{\mu}m$, thermally expandable capsules with relatively uniform particle sizes consisting of a n-octane/poly(acrylonitrile-co-methyl methacrylate) core/shell structure were synthesized using SPG membrane emulsification and suspension polymerization. Four steric stabilizers and five crosslinking agents were employed. When poly(vinyl alcohol) as a stabilizer was used, the prepared capsules showed a smooth and regular morphology and the liquid hydrocarbon (n-octane) was well encapsulated in the core. When 1,4-butnaediol methacrylate (BDDMA) was used as a crosslinker, the uniform capsules with the average diameter of $36.8{\mu}m$ were synthesized. The capsules prepared with 0.05 mol% BDDMA showed the best encapsulation efficiency.

$30-50{\mu}m$의 입도를 갖는 마이크로캡슐을 목표로 poly(acrylonitrile-co-methyl methacrylate)를 쉘로, n-octane을 코어로 하는 코어-쉘 구조의 열팽창 마이크로캡슐을 합성하였다. SPG 멤브레인 유화 후 현탁 중합하여 기존의 현탁 중합대비 균일한 입자를 합성하였다. 또한 네 가지 안정제 및 다섯 가지 가교제의 종류와 함량에 따른 캡슐의 합성을 진행하였다. Poly(vinyl alcohol)을 안정제로 하여 합성한 캡슐의 표면이 매끈하면서도 균일한 형태를 보였으며, 액체 탄화수소가 코어에 캡슐화된 양 또한 우수하였다. 또한 가교제로 1,4-butnaediol methacrylate (BDDMA)를 첨가했을 때 평균입경 $36.8{\mu}m$의 입자가 균일하게 합성되었다. 또한 BDDMA를 0.05 mol% 함량으로 합성한 입자의 캡슐화 정도가 가장 우수하였다.

Keywords

References

  1. M. Jonsson, O. Nordin, E. Malmstrom, and C. Hammer, Polymer, 47, 3315, (2006). https://doi.org/10.1016/j.polymer.2006.03.013
  2. J. N. Yoo, Polymer Science and Technology, 2, 294, (1991).
  3. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, J. Appl. Polym. Sci., 117, 384 (2010).
  4. Y. Kawaguchi and T. Oishi, J. Appl. Polym. Sci., 93, 505 (2004). https://doi.org/10.1002/app.20460
  5. M. Jonsson, D. Nystrom, O. Nordin, and E. Malmstrom, Eur. Polym. J., 45, 2374 (2009). https://doi.org/10.1016/j.eurpolymj.2009.05.002
  6. M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, J. Appl. Polym. Sci., 118, 1219 (2010).
  7. L. Chu, R. Xie, J. Zhu, W. Chen, T. Yamaguchi, and S. Nakao, J. Colloid Interf. Sci., 265, 187 (2003). https://doi.org/10.1016/S0021-9797(03)00350-3
  8. A. Rahman, M. E. Dickinson, and M. M. Farid, Mater. Renew. Sustain. Energy, 1, 1 (2012). https://doi.org/10.1007/s40243-012-0001-y
  9. J. Lee, D. R. Hwang, S. E. Shim, and Y. Rhym, Macromol. Res., 18, 1142 (2010). https://doi.org/10.1007/s13233-010-1202-9
  10. H. Yuyama, T. Hashimoto, G. Ma, M. Nagai, and S. Omi, J. Appl. Polym. Sci., 78, 1025 (2000). https://doi.org/10.1002/1097-4628(20001031)78:5<1025::AID-APP120>3.0.CO;2-A
  11. S. Omi, Colloids Surf. Physicochem. Eng. Aspects, 109, 97 (1996). https://doi.org/10.1016/0927-7757(95)03477-3
  12. W. Li, G. Song, G. Tang, X. Chu, S. Ma, and C. Liu, Energy, 36, 785 (2011). https://doi.org/10.1016/j.energy.2010.12.041
  13. Y. Kawaguchi, Y. Itamura, K. Onimura, and T. Oishi, J. Appl. Polym. Sci., 96, 1306 (2005). https://doi.org/10.1002/app.21429
  14. T. Nakashima, M. Shimizu, and M. Kukizaki, Adv. Drug Deliv. Rev., 45, 47 (2000). https://doi.org/10.1016/S0169-409X(00)00099-5
  15. L. Li, P. Thangamathesvaran, C. Yue, K. Tam, X. Hu, and Y. Lam, Langmuir, 17, 8062 (2001). https://doi.org/10.1021/la010917r
  16. P. J. Dowding and B. Vincent, Colloids Surf. Physicochem. Eng. Aspects, 161, 259 (2000). https://doi.org/10.1016/S0927-7757(99)00375-1
  17. D. Kim, K. Lee, and S. Choe, Macromol. Res., 17, 250 (2009). https://doi.org/10.1007/BF03218688
  18. O. Okay, Polymer, 40, 4117 (1999). https://doi.org/10.1016/S0032-3861(98)00640-5

Cited by

  1. Water as Blowing Agent: Preparation of Environmental Thermally Expandable Microspheres via Inverse Suspension Polymerization pp.1525-6111, 2017, https://doi.org/10.1080/03602559.2017.1370110
  2. Polymeric nanocapsules containing methylcyclohexane for improving thermally induced debonding of thin adhesive films vol.135, pp.31, 2018, https://doi.org/10.1002/app.46586
  3. Influence of electrolytes on thermal expansion microcapsules pp.1520-5738, 2019, https://doi.org/10.1080/10601325.2018.1549948
  4. Effects of Light-weight Dash Insulation Pad with TPE Sheet Filled with TEMs vol.29, pp.5, 2015, https://doi.org/10.7467/ksae.2021.29.5.459
  5. Heat-induced spontaneous and damage-free separation of transparent polymer thin films based on clickable decomposition of pyrolytic core-shell nanocapsules vol.30, pp.None, 2015, https://doi.org/10.1016/j.mtcomm.2021.103079