Studies on Particle Size Control and Stability of Lead Chromate Pigment Particles

크롬산납 무기안료 입자 제어 및 안정성에 관한 연구

  • Park, Chan Kyu (Department of Chemical Engineering, Dong-A University) ;
  • Jung, Dae Yoon (Department of Chemical Engineering, Dong-A University) ;
  • Chang, Sang Mok (Department of Chemical Engineering, Dong-A University) ;
  • Lee, Sang Rok (Department of Chemical Engineering, Dong-A University)
  • 박찬규 (동아대학교 공과대학 화학공학과) ;
  • 정대윤 (동아대학교 공과대학 화학공학과) ;
  • 장상목 (동아대학교 공과대학 화학공학과) ;
  • 이상록 (동아대학교 공과대학 화학공학과)
  • Received : 2007.11.22
  • Accepted : 2008.04.16
  • Published : 2008.06.10

Abstract

For the synthesis of lead chromate pigments, we investigated the characteristics of particle growth with reacting conditions in the synthetic process, the effect of additives, and its micro-capsulation. The more tiny and uniform dispersion particles could be obtained at a lower pH and diluter intial concentration. The variation range of average pigment size was increased with the agitating speed. The pigment size could be controlled by adding aluminum sulfate as an additive, which maintained the optimum particle dispersion. It was found that the optimum micro-capsulation conditions were pH 9~10 and above $90^{\circ}C$ during the micro-capsulation of lead chromate pigment, and below 0.5% humidity after micro-capsulation.

크롬산납안료입자의 합성과정에서 반응조건의 변화에 따른 입자의 성장특성, 첨가제 첨가에 의한 영향, 그리고 마이크로캡슐화에 관하여 조사하였다. 크롬산납 무기안료의 합성과정에서 생성용액의 pH가 낮을수록, 반응물질의 초기농도가 묽을수록 입자크기가 작은 균일한 분산입자를 얻을 수 있었다. 교반속도가 큰 경우에서 평균입자크기의 감소 및 증가에 대한 변화폭이 크게 나타남을 알 수 있었다. 합성된 크롬산납 안료입자의 숙성과정에 황산알루미늄을 첨가하여 표면처리 함으로써 입자크기의 제어가 가능하였고, 입자의 입도분포 상태를 최적 분산 상태로 유지하는 효과가 있음을 알 수 있었다. 안료입자의 마이크로캡슐화가 진행되는 용액의 pH 범위를 9~10, 반응온도를 $90^{\circ}C$ 이상으로 유지하고 마이크로캡슐화 후 충분한 건조를 통해 입자의 수분함량을 0.5% 이하로 유지할 때 최적의 마이크로캡슐화가 됨을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 동아대학교

References

  1. R. C. Schiek, Pigment Handbook, 1, 357 John Wiley & Sons (1976)
  2. 日本顔料技術協會, 顔料便覽, 452 誠文堂新光社 (1989)
  3. 小石 眞純, 微粒子設計, 73 工業調査會 (1987)
  4. 日本技術情報協會, 最新顔料分散技術, 103 技術情報社 (1993)
  5. K. C. Song, J. H. Kim, and J. S. Sung, HWAHAK KONGHAK, 35, 457 (1997)
  6. S. Hirano, Bull. Ceram. Soc. Jap., 22, 1052 (1987)
  7. B. L. Aslund and A. Rasmuson, AIChE J., 38, 328 (1992) https://doi.org/10.1002/aic.690380303
  8. H. Muhr, J.-P. Leclerc and E. Plasari, Ind. Eng. Chem. Res., 36, 675 (1997) https://doi.org/10.1021/ie960401g
  9. 中原佳子, 増田道弘, 中原藤也, 大阪技術試験所季報, 41, 16, (1990)
  10. D. Ilievki and E. White, Chem. Eng. Sci., 49, 3227 (1994) https://doi.org/10.1016/0009-2509(94)E0060-4
  11. A. Halfon and S. Kaliaguine, Can. J. Chem. Eng., 54, 160 (1976)
  12. N. Brown, J. Cryst. Growth 87, 281 (1988) https://doi.org/10.1016/0022-0248(88)90176-5
  13. O. Levenspiel, Chemical Reaction Engineering 2nd Edition, 323 (1978)
  14. O. Levenspiel, The Chemical Reactor Omnibook (1979)
  15. S. R. Lee, D. Y. Jung, and E. I. Kunugita, Kagaku Kogaku Ronbunshu, 26, 360 (2000) https://doi.org/10.1252/kakoronbunshu.26.360
  16. J. Li, J. H. Wang, and Y. X. Zhang, Ind. Eng. Chem. Res., 36, 2657 (1997) https://doi.org/10.1021/ie960422a
  17. 中原佳子, 田中裕子, 江原泰子, 中原藤也, 色材, 61, 488 (1988)
  18. S.-J. Park, Y.-J. Yang, J.-R. Lee, and D.-H. Suh, J. Korean Ind. Eng. Chem., 14, 354 (2003)
  19. S.-J. Park, K.-S. Kim, and S.-K. Hong J. Korean Ind. Eng. Chem., 14, 1104 (2003)
  20. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. S. Al-Aasser, J. Polym. Sci. Chem., 38, 4441 (2000) https://doi.org/10.1002/1099-0518(20001215)38:24<4441::AID-POLA130>3.0.CO;2-U
  21. S. J. Park, Y. S. Shin, and J. R. Lee, J. Colloid Interface Sci., 241, 501 (2001)
  22. 刈米孝夫, 日高徹, 小石真純, 尾見信三, 天野晴之, 乳化.分散プロ セスの機能と応用技術, 135 Science forum (1995)
  23. U. S. Patent 3,370,971 (1968)
  24. S.-Y. Park, H.-K. Jeong, M.-S. Kim, S.-C. Kim, and K.-D. Nam, J. Korean Ind. Eng. Chem., 13, 330 (2002)
  25. H.-K. Jeong, S.-Y. Park, M.-S. Kim, and K.-D. Nam, J. Korean Ind. Eng. Chem., 13, 558 (2002)