• Title/Summary/Keyword: 리튬 이온전지

Search Result 525, Processing Time 0.031 seconds

A Study on Optimal Configuration Method of Hybrid ESS using Lead-acid and Lithium-ion Batteries for Supply of Variation Loads (변동부하 공급을 위한 하이브리드 ESS의 연축전지와 리튬이온전지의 최적구성방안에 관한 연구)

  • Rho, Dea-seok;Choi, Seong-sik;Lee, Hu-dong;Chang, Byunh-hoon;Kim, Su-yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • The large scaled lead-acid battery is widely used for efficient operation of the photovoltaic system in many islands. However, lithium-ion battery is now being introduced to mitigate the fluctuation of wind power and to replace lead-acid battery. Therefore, hybrid ESS (Energy Storage system) that combines lithium-ion battery with lead-acid battery is being required because lithium-ion battery is costly in present stage. Under this circumstance, this paper presents the optimal algorithm to create composition rate of hybrid ESS by considering fixed and variable costs in order to maximize advantage of each battery. With minimization of total cost including fixed and variable costs, the optimal composition rate can be calculated based on the various scenarios such as load variation, life cycle and cost trend. From simulation results, it is confirmed that the proposed algorithms are an effective tool to produce a optimal composition rate.

Electrochemical Studies of Li Intercalation in Ni0.2V2O5 Aerogel (리튬전지용 Ni0.2V2O5 Aerogel 전극의 특성)

  • Park, Heai-Ku;Kim, Kwang-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.491-495
    • /
    • 1999
  • $Ni_{0.2}V_2O_5$ aerogel (ARG) was synthesized via the sol gel method and has been studied with an emphasis on the characterization of its electrochemical properties. ARG appear to be amorphous layered material. Electron micrograph revealed that entangled fibrous textures has been grown to form anisotropic corrugated sheets. Several sites for the Li ion intercalation exist between the layers of ARG and average cell potential was 3.1 V vs $Li/Li^+$ Th charge transfer resistance increases 3 to 4 times as lithium composition increases, but the interphase resistance remains almost constant regardless of the lithium composition in thc ARG.

  • PDF

기획특집_3 - 핵심 키워드 '리튬2차전지'

  • Jo, Byeong-Won
    • Bulletin of Korea Environmental Preservation Association
    • /
    • s.385
    • /
    • pp.20-23
    • /
    • 2010
  • 전지는 크게 1차전지와 2차전지로 분류된다. 1차전지는 재충전을 할 수 없는 1회 사용전지를 말하며 2차전지는 충전이 가능해 몇 번이고 사용가능한 전지이다. 생성에너지의 효율 향상, 즉 에너지저장으로의 패러다임 변화가 일어나고 있다. 2차전지 중 리튬이온전지는 다른 전력저장 기술에 비해 향후 기술의 성장 가능성이 높아 적용분야의 확대가 예상되며 향후 중대형 전지분야에서도 경쟁력 확보가 가능할 것으로 전망되고 있다.

  • PDF

Continuous and discrete time state-space equation analysis about electrical equivalent circuit for lithium-ion battery (리튬 이온 전지의 전기적 등가 회로에 대한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Lee, Pyeongyeon;Kim, Sungkeum;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.204-205
    • /
    • 2019
  • 리튬 이온 전지를 사용하기 위해선 내부 상태를 추정하는 알고리즘이 필요하다. 알고리즘 적용을 위해 리튬 이온 전지에서 나오는 전압과 전류신호를 이용해 전기적 등가 회로 모델을 설계한다. 이 모델은 전압원, 저항, 캐패시터로 구성되어 있으며, 충전과 방전 시 발생하는 전기적 신호를 모사한 것이다. 전기적 등가 회로 모델 분석에 사용되는 상태방정식은 알고리즘과 상황에 따라 변경된다. 본 논문에서는 연속시간 상태방정식과 이산시간 상태방정식에 대해 다루었다. 그리고 실제 알고리즘에 적용해 성능을 확인하였다.

  • PDF

콜타르 핏치로부터 제조한 리튬 이온 이차전지 부극재료의 특성

  • 홍현진;양갑승;윤광의;이동준
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.508-511
    • /
    • 1998
  • 최근 들어 이동통근의 발달로 말미암아 이에 적합한 초경량, 초소형 전지의 개발이 요구된 Li은 지구상에 존재하는 흔한금속이며 그 환원 전위가 3.04V고 금속 중 가장 큰 전위값을 갖고 있다. 현재 상업화되어 있는 리튬이차전지는 정극에 대부분 LiCoO$_2$을 부극에 탄소재료를 사용하고 있다. (중략)

  • PDF

Computational Modeling of Charge-Discharge Characteristics of Lithium-Ion Batteries (리튬이온 전지의 충방전 특성에 대한 전산 모델링)

  • Lee, Dae-Hyun;Yoon, Do-Young
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.278-285
    • /
    • 2011
  • Computational modelling and simulation for the charge-discharge characteristics of Lithium-ion batteries have been carried out. The battery system consists of a simplified 2-dimensional single cell for the modelling, in which the thermal modelling on the charge-discharge characteristics was conducted in the temperature range from 288 K through 318 K by using FEMLAB as an engineering PDE solver. While material parameters adopted in the present modelling were dependent on the system temperature, their thermal modelling were applied on the simulations of the charge-discharge period and the rate of transferring charges systematically. The resulting simulation shows that the cycle of the charge-discharge shorten itself by reducing the system temperature, regardless of the charge-discharge rates. In addition, the mass-transport phenomena of Lithium ion have been discussed in connection with the charge-discharge characteristics in the battery.

Separators far Li-Ion Secondary Batteries (리튬이온 2차전지용 분리막)

  • Nam Sang Yong;Lee Young Moo;Lee Chang Hyun;Park Ho Bum;Rhim Ji Won;Ha Seong Yong;Kang Jong Seok
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.