콜타르 평치로부터 제조한 리튬 이온 이차전지
부품제료의 특성

홍현진, 양갑승, 윤광의*, 이동준*
전남대학교 섬유공학과, *(주)경평제철화학 중앙연구소

1. 서 론

최근 들어 이동통신의 발달로 말미암아 이에 적합한 초경량, 초소형 전자의 개발이 요구된 Li온 지구상에 존재하는 혼합금속이며 그 환원 전위가 3.04V고 금속증 가장 큰 전위값을 갖고 있다. 현재 상업화되어 있는 리튬이 차전지는 정극에 대부분 LiCoO₂을 부 균에 탄소재료를 사용하고 있다.

탄소재료는 결정화 정도에 따라서 리튬 2차전지의 전기용량과 방전특 성이 다양한 것으로 알려져 있다. 이러한 탄소재료는 결정화상 저결정성 탄 소(amorphous carbon) 및 고결정성 탄소(crystalline carbon)로 대별되며 고 결정성 탄소재료는 일반적으로 광각 X-선화결법의 의한 결정상수가 탄소 층면 의 면 간격 do02 ≤ 3.4 Å, Lc(002) ≥ 50Å의 물질을 의미하며, 중·방전용량 및 Coulomb효과가 높고 방전시 낮고 평평한 전위 곡선을 나타낸다. 고결
정성인 흑연은 전체액에 대한 분해 반응성 및 고온도 처리(2400℃-3000℃)에 따른 코스트 상승등의 문제점을 가지고 있다. 일반적으로 do02 ≥ 3.7Å인 저결정성 탄소재료는 낮은 초기 Coulomb 효과 및 어려운 충전방법 등이 문제점 으로 지적되고 있으나, 흑연의 이론적인 372mAh/g을 훨씬 능가하는 전자용량(400-650mAh/g) 및 전해질과의 낮은 부반응성 그리고 저온 처리(1000℃ 정도)에 의한 저 코스트가 장점으로 알려져 있다 [1]. 탄소전극이 Li 이온을 흡착하는 능력은 전기화학적 산화/환원반응 기구의 특성에 기인해서 설명 하는데, 흑연과 같은 고결정성계는 탄소 층간에 Li이온이 intercalation되어 있다고 설명되며, 저결정성계는 각 탄소의 single layer에 Li이온이 doping 되었다고 설명되어지고 있다 [2].

본 연구에서는 저분자량의 콜타르 평치를 Br₂를 이용하여 축합반응시
켜 2차 전지 부품용 프리커서를 합성하였으며, 안정화 및 열처리방법을 변화
시켜 구조적 변화에 따른 중·방전용량 및 전지 특성을 검토하였다.
2. 실험

본 연구에서 사용된 콜타르 펽치(연화점 110℃)는 (주)가평체철화학에서 제공받아 사용하였으며 이것을 THF(tetrahydrofuran)에 용해하여 불용분을 제거한 후 연화점 85℃인 THF 가용땃치(TSP)를 제조하여 출발물질로 사용하였다. TSP를 180℃까지 습은 시킨 후 Br2를 사용하여 축합반응 시키고 또 다시 310℃까지 습은 시킨 후 질소 기류를 사용하여 연화점 155℃와 25℃의 개질된 땽치를 제조하였다. 제조된 땽치를 (1)600℃ 탄화후 attrition mill을 사용하여 분쇄후 1000℃ 탄화시키거나(TSP/Br2-1000℃), (2) food processor를 사용하여 프리커서 땽치를 분쇄한 후 300℃에서 안정화하여 1000℃(TSP/Br2/air300℃-1000℃) 및 1100℃까지 탄화하여 그 구조를 비교하고 전자실험하였다.

입도분포는 입도분석기(Malvern PAS U.K)에서 분말을 메탈알콜/물혼합용기에 분산시켜 측정하였으며, 시료를 폴리에스터 수지에 함침 후 연마하여 반사 편광현미경(AF-X-II, Type104, Nikon, Japan)에서 1° red plate에서 흔히 센서 특성을 확인하였다. 여러 시료의 적층성 및 충전거리(d002)를 측정하기 위하여 X-선화학분석(Dmax 1200, Rigaku, Japan)을 사용하여 분석하였다.

3. 결과 및 토론

브롬(Br2)을 사용하여 중축합된 TSP는 중축합되지 않은 것과 비교할 때 브롬(Br2)의 중축반응에 의해 분자량의 증가로 유동성이 억제되어 이방성이 감소된 것으로 보인다(Fig.1-(a) 및 (b) 비교).

한편 동방성 특성을 갖게하여 중·방전용량을 증가시키기 위해 분쇄된 분말을 안정화 한 후 탄화했을 때 이방성 특성이 감소하고 동방성에 가까워지는 구조를 보였으며 표피는 더욱 동방성에 가까운 구조를 보였다(Fig. 2).

열처리온도 1000℃ 및 1100℃에서 편광현미경으로 관찰된 구조의 차이는 확실히 구분되지 않았다. 이러한 현상은 X-ray 회절결과에서 알 수 있듯이 안정화 후 열처리에 의해서 적층의 크기는 1/2 정도로 감소했고, 1100℃ 열처리에 의해서 1000℃ 열처리한 것에 비해 약간 증가한 것으로 보인다.(Table 1, Fig.3)
Fig. 1. Polarized light microphotographs of carbonized pitch
(a) TSP-1000°C (b) TSP/Br₂-1000°C

Fig. 2. Polarized light microphotographs of carbon powder carbonized after air stabilization.
(a) TSP/Br₂/air 300°C-1000°C (b) CP/Br₂/air 300°C-1100°C

Table 1. X-ray parameters of the sample

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>2θ</th>
<th>d₀₀₂(Å)</th>
<th>L_c(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP-1000°C</td>
<td>25.25</td>
<td>3.523</td>
<td>23.92</td>
</tr>
<tr>
<td>TSP/Br₂-1000°C</td>
<td>25.3</td>
<td>3.517</td>
<td>23.68</td>
</tr>
<tr>
<td>TSP/Br₂/air 300°C-1000°C</td>
<td>23.2</td>
<td>3.830</td>
<td>10.51</td>
</tr>
<tr>
<td>TSP/Br₂/air 300°C-1100°C</td>
<td>24.2</td>
<td>3.674</td>
<td>12.4</td>
</tr>
</tbody>
</table>
Fig. 3. X-ray diffraction of the sample

감사의 글: 이 연구는 '97 공업기반기술, (주)기평제철화학 수탁연구에
의하여 수행되었으며 이에 감사한다.

4. 참고 문헌
1. 제1회 리튬이차전지 강습회, 한국과학기술원, p46(1997)