Separators far Li-Ion Secondary Batteries

리튬이온 2차전지용 분리막

  • 남상용 (경상대학교 고분자공학과, 공학연구원) ;
  • 이영무 (한양대학교 공과대학 응용화학공학부 국가지정분리막연구실) ;
  • 이창현 (한양대학교 공과대학 응용화학공학부 국가지정분리막연구실) ;
  • 박호범 (한양대학교 공과대학 응용화학공학부 국가지정분리막연구실) ;
  • 임지원 (한남대학교 화학공학과) ;
  • 하성용 ((주)에어레인) ;
  • 강종석 (한국과학기술정보연구원)
  • Published : 2004.12.01

Abstract

The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.

고분자 분리막 기술은 리튬이온전지나 리튬폴리머전지와 같은 리튬이차전지의 성능을 좌우할 정도로 중요한 요소기술이다. 본 논문에서는 지금까지 개발되어 사용되고 있는 다양한 고분자 분리막의 특징 및 기술동향에 대하여 기술하고, 보다 적합한 분리막의 요건을 만족시키기 위한 고분자물질의 판단기준을, 특히 안정성 측면에서 살펴보고자 한다. 또한 실제 리튬이온전지용 분리막을 제조하기 위한 제조공정을 통해 고분자재질의 특징과 관련한 적용성의 여부를 판단코자 하며, 제조된 분리막에 대한 실용화 가능성을 판단하기 위한 분리막의 물리적 요구치 및 측정법에 대하여 기술코자 한다.

Keywords

References

  1. M. L. Meeus and Y. A. J. Strauven, 'Zinc powder for alkaline battery', Eur. Pat. Appl. ED 427315 (1991)
  2. M. Hishinuma, T. Iwahori, H. Sugimoto, H. Sugawa, T. Tanaka, T. Yamamoto, Y. Yanagisawa, Y. Yoda, and S. Yoshida, 'Zinc-iodine secondary cell using 6-Nylon or poly(ether) based electrode basic research for industrial use of the secondary cell', Electrochim. Acta., 35, 1, pp. 255-261 (1990)
  3. B. Scrosati, 'Challenge of portable power', Nature, 373, pp. 557-558 (1995)
  4. A. B. Chmielewski, A. Das, C. Cassapakis, D. Allen, W. J. Schafer, J. Sercel, F. Deligiannis, M. Piszcor, P. A. Jones, D. Barnett, S. Rawal, and T. Reddy, 31st Int. Energy Conv. Eng. Conf., 4, 2193 (1996)
  5. Dae Woo Ihm, Jae Geun Noh, and Jin Yeol Kim, 'Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery, J. Power Sources, 109, pp. 388-393 (2002)
  6. R. Koksbang, J. Barker, H. Shi, and M. Y. Saidi, 'Cathode materials for lithium rocking chair batteries', Solid State Ionics, 84, pp. 1-21 (1996)
  7. R. Koksbang, I. I. Olsen, and D. Shackle, 'Review of hybrid polymer electrolytes and rechargeable lithium batteries', Solid State Ionics, 69, 3-4, pp. 320-335 (1994)
  8. M. B. Armand, 'Polymer solid electrolyte an overview', Solid State Ionics, 9-10, pp. 745-754 (1983)
  9. K. M. Abraham and M. Alamgir, 'Lithium ion-conductive solid polymer electrolytes with liquid-like conductivity', J. Electrochem. Soc., 137, 5, pp. 1657-1658 (1990)
  10. K. T. Ciemiecki and J. J. Auborn, 'Lithium batteries', Electrochemical Society Proceedings (Edited by A. N. Dey), PV84-1, p. 460 (1984)
  11. R. T. Giovannoni and H. Vaidyanthan, Braz. Separator of battery, Pat. BR 8804397 (1989)
  12. I. Ishigaki, T. Sugo, K. Senoo, T. Okada, J. Okamoto, and S. Machi, 'Graft polymerization of acrylic acid onto polyethylene film by preirradiation method. II. Effects of oxygen at irradiation, storage time after irradiation, mohr's salt, and ethylene dichloride', J. Appl. Polym. Sci., 27, pp. 1043-1051 (1982)
  13. T. Nada, S. Kato, Y. Yoshihisa, K. Takeuchi, and K. Murata, 'Application of solid-polymer electrolyte in lithium batteries : ultra-thin film battery', J. Power Sources, 43, 1-3, pp. 89-99 (1993)
  14. M. Watanabe, K. Sanui, and N. Ogata, 'Correlation between ionic conductivity and the dynamic mechanical property of polymer complexes formed by a segmented polyether poly(urethane urea) and lithium perchlorate', Macromolecules, 19, pp. 815-819 (1986)
  15. M. A. Ratner, 'Polymer Electrolyte Reviews-I', J. R. MacCallum, C. A. Vincent, Ed., Elsevier Applied Science, London and New York, p. 173 (1987)
  16. M. B. Armand, 'Polymer Electrolytes Reviews', J. R. McCallum, C. A. Vincent, Ed., Elsevier Applied Science: London, 1, p. 1 (1987)
  17. F. M. Gray, 'Polymer Electrolytes', RSC Materials Monographs, The Royal Society of Chemistry, Cambridge U. K. (1997)
  18. M. Armand, J. M. Chabagno, and M. Duclot, 'Fast Transport in Solids', P. Vashishta, Ed., North-Holland, New York, p. 131 (1997)
  19. B. Scrosati, F. Croce, and S. Panero, 'Progress in lithium polymer battery R&D', J. Power Sources, 100, pp. 93-100 (2001)
  20. D. Swierczynski, A. Zalewska, and W. Wieczorek, 'Composite polymeric electrolytes from the PEODME/$LiClO_4-SiO_2$ system', Chem. Mater., 13, pp. 1560-1564 (2001)
  21. S. H. Chung, Y. Wang, L. Persi, F. Coree, S. G. Greenbaum, B. Scrosati, and E. Plichta, 'Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides', J. Power Sources, 97-98, pp. 644-648 (2001)
  22. F. Croce, G. B. Appetecchi, and B. Scrosati, 'Nanocomposite polymer electrolytes for lithium batteries', Nature, 394, pp. 456-458 (1998)
  23. K. M. Abraham, 'Directions in secondary lithium battery research and development', Electrochim. Acta, 38, 9, pp. 1233-1248 (1993)
  24. R. B. MacMullin, G. A. Muccini, 'Characteristics of porous beds and structures', J. AIChE, 2, (1956) 393-403
  25. G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, 'Characterization of microporous separators for lithium-ion batteries', J. Power Sources, 77, pp 34-41 (1999)
  26. Y. Saito, K. Hirai, H. Emori, S. Murata, Y. Uetani, and H. Kii, 'Carrier diffusivity in porous membranes', J. Phys. Chem. B, 108, pp. 1137-1142 (2004)
  27. Y. Saito, C. Caopiglia, H. Yamamoto, and P. Mustarelli, 'Ionic conduction mechanisms of polyvinylidene fluoride-hexafluoropropylene type polymer electrolytes with LiN($CF_3SO_2)_2$', J. Electrochem. Soc., 147, pp. 1645-1650 (2000)
  28. J. E. Tanner and E. O. Stejskal, 'Restricted self diffusion of protons in colloidal systems by the pulsed-gradient', spin-echo method, J. Chem. Phys., 49, 4, pp. 1768-1777 (1968)
  29. J. E. Tanner, 'Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient', J Chem. Phys., 69, 4, pp. 1748-1754 (1978)
  30. C. F. Kahle II, 'Microporous organic thin films by the solvent precipitation method: a review of formulation techniques and their commercial applications', Ind. Eng. Chem. Res., 40. pp. 33-36 (2001)
  31. R. Callahan, C. Dwiggins, H. Fisher, M. Geiger, D. Hoffman, W. Yu, K. Abraham, M. Jillson, and T. Nguyen, 'Advanced separators for lithium batteries, Spring meeting of electrochemical society', Boston, Extended abstracts and program, p. 72 (1994)
  32. M. Geiger, R. Callahan, C. Dwiggins, H. Fisher, D. Hoffman, W. Yu, K. Abraham, M. Jillson, and T. Nguyen, 'Advanced separator for lithium batteries, The eleventh international seminar on primary and secondary battery technology and applications', Feb. 28 (1994)
  33. R. Spotnitz, M. Ferebee, R. Callahan, K. Nguyen, W. Yu, M. Geiger, C. Dwiggins, H. Fisher, and D. Hoffman, 'Shut down separator, The twelvth international seminaron primary and secondary battery technology and applications', March 6 (1995)
  34. J. Lundquist, C. Lundsager, N. Palmer, and H. Troffkin, 'Battery separator', US Patent 4650730 (1987)
  35. J. Lundquist, C. Lundsager, N. Palmer, and H. Troffkin, 'Battery separator', US Patent 4731304 (1988)
  36. H. Troffkin, B. Rein, R. Spotnitz, R. Giovannoni, and Y. Guo, 'Process of making a battery separator', US Patent 5240655 (1993)
  37. F. Laman, M. Gee, and J. Denovan, 'Impedance studies for separators in rechargeable lithium batteries', J. Electrochem. Soc., 140, 4, pp. L51-L53 (1993)
  38. J. Adebahr, P. Gavelin, D. Ostrovskii, L. M. Torell, and B. Wesslen, 'Raman study on intermolecular and ionic interactions in gel electrolytes', J. Mol. Struct., 482, 487-490 (1999)
  39. J. Adebahr, M. Forsyth, P. Gavelin, P. Jacobsson, and G. Ordd, 'Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers', J. Phys. Chem. B, 106, pp. 12119-12123 (2002)
  40. J. Adebahr, P. Gavelin, P. Jannasch, D. Ostrovskii, B. Wesslen, and P. Jacobsson, 'Cation coordination in ion-conducting gels based on PEO-grafted polymers', Solid State Ionics, 135, pp. 149-154 (2000)
  41. P. Gavelin, D. Ostrovskii, J. Adebahr, P. Jannasch, and B. Wesslen, 'Amphiphilic polymer gel electrolytes. II. Influence of the ethylene oxide side-chain length on the gel properties', J. Polym. Sci., Part B : Polym. Phys., 39, pp. 1519-1524 (2001)
  42. P. M. Blonsky, D. F. Shriver, P. Austin, and H. R. Allcock, 'Polyphosphazene solid electrolyte', J. Am. Chem. Soc., 106, pp. 6854-6855 (1984)
  43. H. R. Allcock, M. E. Napierala, C. G. Cameron, and S. J. M. O'Connor, 'Synthesis and characterization of ionically conducting alkoxy ether/ alkoxy mixed-substituent poly(organophosphazenes) and their use as solid solvents for ionic conduction', Macromolecules, 29, pp. 1951-1956 (1996)
  44. H. R. Allcock, S. J. M. O'Connor, D. L. Olmeijer, M. E. Napierala, and C. G. Cameron, 'Polyphos-phazenes bearing branched and linear oligoethy-leneoxy side groups as solid solvents for ionic conduction', Macromolecules, 29, pp. 7544-7552 (1996)
  45. H. R. Allcock, R. Ravikiran, and S. J. M O'Connor, 'Effect of oligo(ethyleneoxy)-cyclotriphosphazenes, tetraglyme, and other small molecules on the ionic conductivity of the poly [bis(methoxyethoxyethoxy) phosphazene] (MEEP)/lithium triflate system', Macromolecules, 30, pp. 3184-3190 (1997)
  46. H. R. Allcock, D. L. Olmeijer, and S. J. M. O'Connor, 'Cation complexation and conductivity in crown ether bearing polyphosphazenes', Macromolecules, 31, pp. 753-759 (1998)
  47. I. M. Khan, Y. Yuan, D. Fish, E. Wu, and J. Smid, 'Comblike polysiloxanes with oligo(oxyethylene) side chains. synthesis and properties', Macromolecules, 21, pp. 2684-2689 (1988)
  48. G. B. Zhou, I. M. Khan, and J. Smid, 'Solventfree cation-conducting polysiloxane electrolytes with pendant oligo(oxyethylene) and sulfonated groups', Macromolecules, 26, pp. 2202-2208 (1993)
  49. R. Spindler and D. F. Shriver, 'Synthesis, NMR characterization, and electrical properties of siloxane-based polymer electrolyte', Macromolecules, 21, pp. 648-654 (1988)
  50. R. Spindler and D. F. Shriver, 'Investigation of a siloxane-based polymer electrolyte employing $^{13}C$', $^{29}Si,\;^7Li\;and\;^{23}Na$ soIid-state NMR spectroscopy, J. Am. Chem. Soc., 110, pp. 3036-3043 (1988)
  51. D. P. Siska and D. F. Shriver, '$Li^+$ conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes', Chem. Mater., 13, pp. 4698-4700 (2002) https://doi.org/10.1021/cm000420n
  52. E. Morales and J. L. Acosta, 'Synthesis and characterization of poly(methylalkoxysiloxane) solid polymer electrolytes incorporating different lithium salts', Electrochim. Acta, 45, pp. 1049-1056 (1999)
  53. R. Hooper, L. J. Lyons, M. K. Mapes, D. Schumacher, D. A. Moline, and R. West, 'Highly conductive siloxane polymers', Macromolecules, 34, pp. 931-936 (2001)
  54. Z. Zhang, D. Sherlock, R. West, and R. West, 'Cross-linked network polymer electrolyte based on a polysiloxane backbone with oligo(oxyethylene) side chains : synthesis and conductivity', Macromolecules, 36, pp. 9176-9180 (2003)