• Title/Summary/Keyword: 리드솔로몬

Search Result 45, Processing Time 0.035 seconds

Design of Reed Solomon Encoder(255,223) for KSLV-I Onboard Video Transmission (KSLV-I 탑재영상전송용 리드솔로몬 인코더(255,223) 설계)

  • Lee, Sang-Rae;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • The purpose of this study is to design and simulate Reed Solomon encoder(255,223) in PCM/FM communication system in order to transmit the KSLV-I onboard video data. Especially in the compressed video data transmission applications, the communication system is required to have a very low BER performance because of interframe or interframe compression techniques. We have used the primitive polynomial of CCSDS standard and calculated the various coefficients and then the encoder have been simulated as a part of RF interface FPGA hardware in a video compression unit.

  • PDF

New Low-Power and Small-Area Reed-Solomon Decoder (새로운 저전력 및 저면적 리드-솔로몬 복호기)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.96-103
    • /
    • 2008
  • This paper proposes a new low-power and small-area Reed-Solomon decoder. The proposed Reed-Solomon decoder using a novel simplified form of the modified Euclid's algorithm can support low-hardware complexity and low-Power consumption for Reed-Solomon decoding. The simplified modified Euclid's algorithm uses new initial conditions and polynomial computations to reduce hardware complexity, and thus, the implemented architecture consisting of 3r basic cells has the lowest hardware complexity compared with existing modified Euclid's and Berlekamp-Massey architectures. The Reed-Solomon decoder has been synthesized using the $0.18{\mu}m$ Samsung standard cell library and operates at 370MHz and its data rate supports up to 2.9Gbps. For the (255, 239, 8) RS code, the gate counts of the simplified modified Euclid's architecture and the whole decoder excluding FIFO memory are only 20,166 and 40,136, respectively. Therefore, the proposed decoder can reduce the total gate count at least 5% compared with the conventional DCME decoder.

Design Optimization of the Arithmatic Logic Unit Circuit for the Processor to Determine the Number of Errors in the Reed Solomon Decoder (리드솔로몬 복호기에서 오류갯수를 계산하는 처리기의 산술논리연산장치 회로 최적화설계)

  • An, Hyeong-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.649-654
    • /
    • 2011
  • In this paper, we show new method to find number of errors in the Reed-Solomon decoder. New design is much faster and has much simpler logic circuit than the former design method. This optimization was possible by very simplified square calculating circuit and parallel processing. The microcontroller of this Reed Solomon decoder can be used for data protection of almost all digital communication and consumer electronic devices.

Optimizing the Circuit for Finding 2 Error Positions of 2 Error Correcting Reed Solomon Decoder (리드솔로몬 복호기에서 2개의 오류시, 오류위치를 찾는 최적화 방법)

  • An, Hyeong-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1C
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, we show new method to find error locations of 2 eight bit symbol errors for 2 error correcting Reed-Solomon decoder. New design is much faster and has much simpler logic circuit than the former design method. This optimization was possible by partitioning the 8 bit operations into 4 bit arithgmatic and logic operations. This Reed Solomon decoder can be used for data protection of almost all digital communication and consumer electronic devices.

Reed-Solomon Encoded Block Storage in Key-value Store-based Blockchain Systems (키값 저장소 기반 블록체인 시스템에서 리드 솔로몬 부호화된 블록 저장)

  • Seong-Hyeon Lee;Jinchun Choi;Myungcheol Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.102-110
    • /
    • 2024
  • Blockchain records all transactions issued by users, which are then replicated, stored, and shared by participants of the blockchain network. Therefore, the capacity of the ledger stored by participants continues to increase as the blockchain network operates. In order to address this issue, research is being conducted on methods that enhance storage efficiency while ensuring that valid values are stored in the ledger even in the presence of device failures or malicious participants. One direction of research is applying techniques such as Reed-Solomon encoding to the storage of blockchain ledgers. In this paper, we apply Reed-Solomon encoding to the key-value store used for ledger storage in an open-source blockchain, and measure the storage efficiency and increasing computational overhead. Experimental results confirm that storage efficiency increased by 86% while the increase in CPU operations required for encoding was only about 2.7%.

Performance Analysis of Reed-Solomon Coded M-ary FSK Modulation in Nakagami Fading Channels (나카가미 페이딩 채널에서 M-ary FSK 변조된 리드솔로몬 부호화의 성능분석)

  • Kang Heau-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1202-1207
    • /
    • 2006
  • In this paper we analyze the performance improvement of the M-ary FSK systems for low power and low data rate applications. This contribution presents a unified analysis of its MRC diversity, uncoded and performance in A WGN, m=2, m=3, Rayleigh and one sided Gaussian fading channels using optimum noncoherent demodulation with Reed-Solomon(RS) codes. The results of this paper should be useful as benchmarks of obtainable performance and as a reference for validating the results of simulation studies when slow fading models are applicable.

MAC-Layer Error Control for Real-Time Broadcasting of MPEG-4 Scalable Video over 3G Networks (3G 네트워크에서 MPEG-4 스케일러블 비디오의 실시간 방송을 위한 실행시간 예측 기반 MAC계층 오류제어)

  • Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.63-71
    • /
    • 2014
  • We analyze the execution time of Reed-Solomon coding, which is the MAC-layer forward error correction scheme used in CDMA2000 1xEV-DO broadcast services, under different air channel conditions. The results show that the time constraints of MPEG-4 cannot be guaranteed by Reed-Solomon decoding when the packet loss rate (PLR) is high, due to its long computation time on current hardware. To alleviate this problem, we propose three error control schemes. Our static scheme bypasses Reed-Solomon decoding at the mobile node to satisfy the MPEG-4 time constraint when the PLR exceeds a given boundary. Second, dynamic scheme corrects errors in a best-effort manner within the time constraint, instead of giving up altogether when the PLR is high; this achieves a further quality improvement. The third, video-aware dynamic scheme fixes errors in a similar way to the dynamic scheme, but in a priority-driven manner which makes the video appear smoother. Extensive simulation results show the effectiveness of our schemes compared to the original FEC scheme.

A Utility-Based Hybrid Error Recovery Scheme for Multimedia Transmission over 3G Cellular Broadcast Networks (3G 방송망에서의 효율적인 멀티미디어 전송을 위한 유틸리티 기반 하이브라드 에러 복구기법)

  • Kang Kyung-Tae;Cho Yong-Jin;Cho Yong-Woo;Cho Jin-Sung;Shin Heon-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.333-342
    • /
    • 2006
  • The cdma2000 lxEV - DO mobile communication system provides broadcast and multicast services (BCMCS) to meet an increasing demand from multimedia data services. The servicing of video streams over a BCMCS network must, however, face a challenge from the unreliable and error-prone nature of the radio channel. The BCMCS network uses Reed-Solomon coding integrated with the MAC protocol for error recovery. We analyze this coding technique and show that it is not effective in the case of slowly moving mobiles. To improve the playback quality of an MPEG-4 FGS video stream, we propose the Hybrid error recovery scheme, which combines Reed-Solomon with ARQ, using slots which are saved by reducing the Reed-Solomon coding overhead. The target packets to be retransmitted are prioritized by a utility function to reduce the packet error rate in the application layer within a fixed retransmission budget. This is achieved by considering of the map of the error control block at each mobile node. The proposed Hybrid error recovery scheme also uses the characteristics of MPEG-4 FGS (fine granularity scalability) to improve the video quality even when conditions are adverse: slow-moving nodes and a high error rate in the physical channel.