New Low-Power and Small-Area Reed-Solomon Decoder

새로운 저전력 및 저면적 리드-솔로몬 복호기

  • Published : 2008.06.25

Abstract

This paper proposes a new low-power and small-area Reed-Solomon decoder. The proposed Reed-Solomon decoder using a novel simplified form of the modified Euclid's algorithm can support low-hardware complexity and low-Power consumption for Reed-Solomon decoding. The simplified modified Euclid's algorithm uses new initial conditions and polynomial computations to reduce hardware complexity, and thus, the implemented architecture consisting of 3r basic cells has the lowest hardware complexity compared with existing modified Euclid's and Berlekamp-Massey architectures. The Reed-Solomon decoder has been synthesized using the $0.18{\mu}m$ Samsung standard cell library and operates at 370MHz and its data rate supports up to 2.9Gbps. For the (255, 239, 8) RS code, the gate counts of the simplified modified Euclid's architecture and the whole decoder excluding FIFO memory are only 20,166 and 40,136, respectively. Therefore, the proposed decoder can reduce the total gate count at least 5% compared with the conventional DCME decoder.

본 논문에서는 새로운 저전력 및 저면적 리드-솔로몬 (Reed-Solomon) 복호기를 제안한다. 제안하는 리드-솔로몬 복호기는 새로운 단순화된 수정 유클리드 알고리즘을 사용하여 낮은 하드웨어 복잡도 및 저전력 리드-솔로몬 복호가 가능하다. 새로운 단순화된 수정 유클리드 알고리즘은 하드웨어 복잡도를 줄이기 위해서 새로운 초기 조건 및 다항식 연산 방식을 사용한다. 따라서 3t개의 기본 셀로 구성된 새로운 단순화된 수정 유클리드 구조는 기존 수정 유클리드 구조는 물론 베르캠프-메세이 구조들에 비해 가장 낮은 하드웨어 복잡도를 갖는다. $0.18{\mu}m$ 삼성 라이브러리를 사용하여 논리합성을 수행한 리드-솔로몬 복호기는 370MHz의 동작 주파수 및 2.9Gbps의 데이터 처리 속도를 갖는다. (255, 239, 8) 리드-솔로몬 코드 복호를 수행하는 단순화된 수정 유클리드 구조와 전체 리드-솔로몬 복호기의 게이트 수는 각각 20,166개와 40,136개이다. 따라서 구현한 리드-솔로몬 복호기는 기존 DCME 복호기에 비해 5%의 게이트 수 절감 효과를 갖는다.

Keywords

References

  1. A. Batra etal., "Multi-Band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a," IEEE P802.15-03/268r3, Mar.2004
  2. TTAS.KO-06.0082/R1, "Specifications for 2.3GHz band portable internet service: physical & medium access control layer," Dec. 2005
  3. European Telecommunications Standards Institute (ETSI), "interaction channel for satellite distribution systems," EN 301 790 v1.4.1, Sep. 2005
  4. E. R. Berlekamp, Algebraic Coding Theory. New York : McGraw-Hill, 1968. (revised-Laguna Hills, CA : Aegean Park, 1984)
  5. R. E. Blahut, Theory and Practice of Error-Control Codes. Reading, MA : Addison-Wesley,1983
  6. J. H. Jeng and T. K. Truong, "On decoding of both errors and erasures of a Reed-Solomon code using an inverse-free Berlekamp-Massey algorithm," IEEE Trans. Commun., vol. 47, pp. 1488-1494, Oct. 1999 https://doi.org/10.1109/26.795817
  7. A. Raghupathy and K. J. R. Liu, "Algorithm- based low-power/high-speed Reed-Solomon decoder design," IEEE Trans. Circuit Syst. II, vol. 47, pp. 1254-1270, Nov. 2000 https://doi.org/10.1109/81.873881
  8. D. V. Sarwate and N. R. Shanbhag, "High-speed architectures for Reed- Solomon decoders," IEEE Trans. VLSI Syst., vol. 9, pp. 641-655, Oct. 2001 https://doi.org/10.1109/92.953498
  9. M. A. A.Ali, A. Abou-El-Azm, and M. F. Marie, "Error rates for non-coherent demodulation FCMA with Reed-Solomon codes in fading satellite channel," in Proc. IEEE Vehicular Techn. Conf. (VTC'99), vol. 1, 1999, pp. 92-96
  10. T. K. Matsushima, T. Matsushima, and S. Hirasawa, "Parallel architecture for high-speed Reed-Solomon codec," in Proc. IEEE Int. Telecommun. Symp. (ITS'98), vol. 2, 1998, pp. 468-473
  11. H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen and I. S. Reed, "A VLSI design of a pipeline Reed-Solomon decoder," IEEE Trans. Comput., vol. C-34, pp. 393-403, May 1985 https://doi.org/10.1109/TC.1985.1676579
  12. H. H. Lee, M. L. Yu and L. Song, "VLSI design of Reed-Solomon decoder architectures," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS' 2000), vol. 5, May 2000, pp. 705-708
  13. H. H. Lee, "Modified Euclidean algorithm block for high-speed Reed-Solomon decoder," Electron. Lett., vol. 37, pp. 903-904, July 2001 https://doi.org/10.1049/el:20010628
  14. J. H. Baek and Myung H. Sunwoo, "New degree computationless modified Euclid's algorithm and architecture for Reed-Solomon decoder," IEEE Trans. VLSI Syst., vol. 14, pp. 915-920, Aug. 2006 https://doi.org/10.1109/TVLSI.2006.878484
  15. 백재현, 선우명훈, "새로운 DCME 알고리즘을 사용한 고속 Reed-Solomon 복호기," 전자공학회 논문지 제40권 SD편, 6호, 81-90쪽, 2003
  16. J. H. Baek and Myung H. Sunwoo, "Enhanced degree ocmputationless modified Euclid's algorithm for Reed-Solomon decoders," Electron. Lett. ,vol. 43, pp. 175-177, Feb. 2007 https://doi.org/10.1049/el:20073718
  17. J. H. Baek and M. H. Sunwoo. "Simplified Degree Computationless Modified Euclid's Algorithm and its Architecture," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS'2007), May 2007, pp. 905-908