• Title/Summary/Keyword: 로켓연소실

Search Result 320, Processing Time 0.028 seconds

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser (초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구)

  • Kim, Jong Rok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.

Development of C/SiC Composite Parts for Rocket Propulsion (로켓 추진기관용 C/SiC 내열부품 개발)

  • Kim, Yunchul;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.68-77
    • /
    • 2019
  • C/SiC composites were developed by a liquid silicon infiltration(LSI) method for use as heat-resistant parts of solid and liquid rocket propulsion engines. The heat resistance characteristics according to the composition ratio (carbon / silicon / silicon carbide) were evaluated by specimen test through arc plasma, supersonic torch test. An ablation equation for oxidation reactions was presented. Through the combustion test it was verified that various parts such as nozzle insert, exit cone and combustion chamber heat resistant parts for rocket propulsion can be manufactured and proved high ablation performance and thermal structure performance.

Establishment and Verification of One-Dimensional Thermal Analysis Technique for Design of Combustion Chamber Cooling Channel (연소실 냉각채널 설계를 위한 1차원 열 해석 기법 확립 및 검증)

  • Kim, Wanchan;Yu, Isang;Shin, Donghae;Ko, Youngsung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.122-129
    • /
    • 2019
  • Predicting heat transfer from the inner wall of the combustion chamber of the liquid rocket is a very difficult task. Several complex processes, such as convection, radiation and conduction must be taken into consideration. Usually commercial programs are used for the analysis of this processes. However, commercial programs are not a perfect solution, because of the long calculation times and a burdening data-input work. In this study, we developed and implemented one - dimensional thermal analysis. This technique can be easily used on the initial stage. The design of the combustion chamber's cooling channel of the steam generator designed using developed technique. In order to compare experimental and theoretical data, the combustion test was performed. Obtained experimental data for the coolant temperature differ from the theoretical prediction by only 8.5%.

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

Numerical study on the transient of supersonic diffuser (초음속 디퓨져 천이현상에 대한 수치적 연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.349-352
    • /
    • 2010
  • A study is analyzed on the transient flow of supersonic diffuser and performed on the of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and temperature of vacuum chamber according to the chamber pressure of starting transient on Liquid rocket engine.

  • PDF

Analysis on Initial Stability Test Results of Underwater Vehicle Using the HR Propulsion System (HR추진기관을 이용한 수중운동체의 초기안정성 시험 결과 분석)

  • Hwang, Heeseong;Kim, Hakseong;You, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1142-1143
    • /
    • 2017
  • In this paper, Underwater propulsion test of SWASH(Small Waterplane Area Single Hull) type underwater vehicle with hybrid rocket system is performed. Watertight structure is applied to prevent a combustion chamber from water, and the control logic is constructed by setting the watertight ignition sequence. As a results, It is confirmed that the ignition is stable in water, and the propulsion system works well along the configured control sequence.

  • PDF

A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber (연소기 노즐확장부 제작 및 재료 기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.505-509
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling and ablative cooling methods were used before, but were not applicable nowadays. Radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite has been used to this day.

  • PDF

Design and Application of Emergency Blockage System for Engine Part at IPPT and SQT (IPPT, SQT에서의 엔진부 비상정지 시스템 설계 및 운용)

  • 하성업;이중엽;정태규;한상엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.44-53
    • /
    • 2003
  • A vertical hot-firing test facility was established to carry out the IPPT(Integrated Propulsion Performance Test) and SQT(Stage Qualification Test) of KSR-III(Korea Sounding Rocket-III). The components for actual launcher were mostly used, hence these tests were carried out under the condition of relatively lower safety margin. To perform hot-firing tests with the maximum safety, an engine emergency blockage system was investigated and applied. An emergency blockage system using combustion chamber pressures and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such a system, the test safety could be secured by rapid judgement and follow-up measures, which made IPPT and SQT be safely completed.

Optimal Output Tracking Control Simulation for Thrust Control of an Open-cycle Liquid Propellant Rocket Engine (개방형 액체로켓엔진의 추력제어를 위한 최적출력 추종제어 시뮬레이션)

  • Cha, Jihyoung;Cho, Woosung;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.52-60
    • /
    • 2020
  • This paper deals with an optimal output tracking control for open-cycle liquid propellant rocket engine. For this purpose, we modeled simplified mathematical model of open-cycle liquid propellant rocket engine and designed optimal output feedback control system using combustion chamber pressure. For design the closed-loop system of open-cycle liquid propellant rocket engine, we designed optimal output feedback linear quadratic tracking control system using the linearized model and demonstrated the performance of the controller through numerical simulation.

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF