DOI QR코드

DOI QR Code

Establishment and Verification of One-Dimensional Thermal Analysis Technique for Design of Combustion Chamber Cooling Channel

연소실 냉각채널 설계를 위한 1차원 열 해석 기법 확립 및 검증

  • Kim, Wanchan (Department of Aerospace Engineering, Chung-nam National University) ;
  • Yu, Isang (Department of Aerospace Engineering, Chung-nam National University) ;
  • Shin, Donghae (Department of Aerospace Engineering, Chung-nam National University) ;
  • Ko, Youngsung (Department of Aerospace Engineering, Chung-nam National University)
  • Received : 2018.10.11
  • Accepted : 2019.01.15
  • Published : 2019.02.01

Abstract

Predicting heat transfer from the inner wall of the combustion chamber of the liquid rocket is a very difficult task. Several complex processes, such as convection, radiation and conduction must be taken into consideration. Usually commercial programs are used for the analysis of this processes. However, commercial programs are not a perfect solution, because of the long calculation times and a burdening data-input work. In this study, we developed and implemented one - dimensional thermal analysis. This technique can be easily used on the initial stage. The design of the combustion chamber's cooling channel of the steam generator designed using developed technique. In order to compare experimental and theoretical data, the combustion test was performed. Obtained experimental data for the coolant temperature differ from the theoretical prediction by only 8.5%.

액체로켓 연소실 내부 벽면에서의 열전달은 대류, 복사 및 전도를 모두 고려해야 하기 때문에, 정확한 열전달량을 예측하기에는 어려움이 있다. 이에 현재 주로 상용 해석 프로그램을 사용할 경우가 많은데, 이 경우에는 복잡한 입력 작업과 상당한 계산 시간이 소요된다는 문제가 있다. 따라서 본 연구에서는 초기 기초 설계 단계에서 간편하게 사용할 수 있는 1차원 열 해석 기법을 정립하였으며, 정립된 1차원 열 해석기법을 통해 본 연구실에서 개발한 스팀제너레이터의 연소실 냉각채널을 설계하였다. 연소 실험 결과, 1차원 열 해석 기법을 통해 예측된 냉각수의 온도 증가량은 실험결과와 약 8.5%의 차이를 보임을 확인하였다.

Keywords

References

  1. Kim, M. S., Yu, I. S., Kim, W. C., Shin, D. H., and Ko, Y. S., "Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges," International Journal of Aeronautical and Space Sciences, Vol. 18, No. 4, 2017, pp. 788-796. https://doi.org/10.5139/IJASS.2017.18.4.788
  2. Cho, W. K., Seol, W. S., and Cho, G. R., "Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber," Journal of The Korean Society for Aeronautical and Space Sciences Vol. 32, No. 4, May 2004, pp. 67-72. https://doi.org/10.5139/JKSAS.2004.32.4.067
  3. Alexander, W. M., and Mohammad, H. N., "Analysis of Film Cooling and Heat Transfer in Rocket Thrust Chamber and Nozzle," AIAA Aerospace Sciences Meeting, 2011.
  4. Wadel, M. F., "Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber With Development of an Optimized Design," NASA Lewis Research Center Report, 1998.
  5. Adami, A., Mortazavu, M., and Nosratollahi, M., "Heat Transfer Modeling of Bipropellant Thrusters for using in Multidisciplinary Design Optimization Algorithm," Journal of Fluid Flow_Heat and Mass Transfer, Vol. 2, Dec. 2015, pp. 40-46.
  6. Jin, S. W., "The Design and Verification of Conjugated Heat Transfer on Diffuser Cooling System Exposed to Hot Combustion Gas," 2013 KSPE Spring Conference, 2013, pp. 816-822.
  7. Yim, K. J,, Kim, H. J., and Kim, S. H., "A Numerical Study on Flow and Heat Transfer Characteristics of Supersonic Second Throat Exhaust Diffuser for High Altitude Simulation," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 5, 2014, pp. 70-78. https://doi.org/10.6108/KSPE.2014.18.5.070
  8. Moon, I. S., Lee, S. M., Moon, I. Y., Yoo, J. H., and Lee, S. Y., "Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis," Journal of Astronomy and Space Sciences, Vol. 28, No. 3, 2011, pp. 233-239. https://doi.org/10.5140/JASS.2011.28.3.233
  9. Добровольский, М. В., "liquid rocket engines," MOSCOW publishing house MGTU named after N.E. Bauman, 2005.
  10. Кутателадзе, С. С., and Леонтьев, А. И., "Heat and Combustion and Friction," MOSCOW energetomizdat, 1985.