DOI QR코드

DOI QR Code

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser

초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구

  • Received : 2012.09.20
  • Accepted : 2013.07.03
  • Published : 2013.08.01

Abstract

A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.

초음속 디퓨져에서 천이구간에 대해서 수치적 기법에 의한 분석을 수행하였다. 수치기법으로는 초음속 디퓨져의 내부유동해석을 위하여 2차원 축대칭 Navier-Stokes equation와 $k-{\epsilon}$ 난류모델을 사용하였으며, 로켓엔진 연소실의 천이 구간의 압력변화에 따라서 디퓨져 내부의 마하수 및 진공챔버의 온도 분포를 비교 검토하였다. 초음속 디퓨져의 작동과정에서 진공챔버 내부에 연소가스가 유입되어지고 이러한 현상에 따라서 진공챔버 내부의 압력 및 온도가 상승하는 결과를 확인하였다. 이러한 유동현상에 따라서 천이과정에서 압력 및 온도 상승을 방지하는 시스템이 필요하다.

Keywords

References

  1. Annamalai, K., Visvanathana, K., Sriramulu b, V., Bhaskaranb, K.A., et al, "Evaluation of the performance of supersonic exhaust diffuser using scaled down models," Experimental Thermal and Fluid Science, Vol. 17, pp. 217-229, 1998. https://doi.org/10.1016/S0894-1777(98)00002-8
  2. Schafer, K., Zimmermann, H., Kruehsel, G., "Altitude Simulation Bench for VINCI Engine," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2003.
  3. Albano, G., Hebrard, J., Leudiere, V., "HM7B engine transient sim-ulator with CARINS tool," EUCASS, 2005.
  4. Binder, M.P., "A transient Model of the RL10A-3-3A rocket engine," 31th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 1995.
  5. Sankaran, S., Satyanarayana, T.N.V., Anna m alai, K., Visvanathan, K., Babu, V., Sundararajan, T., "CFD Analysis for Sim ulated Altitude Testing of Rocket Motors," Canadian Aeronautics and Space Journal, Vol. 48, No. 2, 2002.
  6. Jones, W.L., "Experimental Study of Zero-Flow Ejectors Using Gaseous Nitrogen," NASA-TD-203, 1960.
  7. Kruehsel, G., Schafer, K., Zimmermann, H., Pauly, C., "Operation of VINCI Altitude Simulation Test Bench P4.1," Aerospace testing, Munich, Germany, 2008.
  8. Hoffmann, K.C. and Chiang S.T., "Com putational Fluid Dynamics for Engineers," Engineering Education System USA, 1993.
  9. Jones, W.P. and Launder, B.E., "The Predi ction of Laminarization with a Two Equ ation Model of Turbulence," Int. Journal of Heat and Mass Transfer, Vol. 15, No. 2, pp. 301-314, 1972. https://doi.org/10.1016/0017-9310(72)90076-2
  10. Sarkar, S., Erlebacher, G., Hussaini, M. Y., and Kreiss, H.O., "The analysis and Modeling of Dilatational Terms in Compressible Turbulence," NASA CR 181959, Dec. 1989.

Cited by

  1. Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation vol.38, pp.4, 2014, https://doi.org/10.3795/KSME-B.2014.38.4.321