• Title/Summary/Keyword: 로직공정

Search Result 100, Processing Time 0.022 seconds

A Study on The Metaverse Content Production Pipeline using ZEPETO World (제페토 월드를 활용한 메타버스 콘텐츠 제작 공정에 관한 연구)

  • Park, MyeongSeok;Cho, Yunsik;Cho, Dasom;Na, Giri;Lee, Jamin;Cho, Sae-Hong;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • This study proposes the metaverse content production pipeline using ZEPETO World, one of the representative metaverse platforms in Korea. Based on the Unity 3D engine, the ZEPETO world is configured using the ZEPETO template, and the core functions of the metaverse content that enable multi-user participation such as logic, interaction, and property control are implemented through the ZEPETO script. This study utilizes the basic functions such as properties, events, and components of the ZEPETO script as well as the ZEPETO player which includes avatar loading, character movement, and camera control functions. In addition, based on ZEPETO's properties such as World Multiplayer and Client Starter, it summarizes the core synchronization process required for multiplay metaverse content production, such as object transformation, dynamic object creation, property addition, and real-time property control. Based on this, we check the proposed production pipeline by directly producing multiplay metaverse content using ZEPETO World.

Design of Partial Product Accumulator using Multi-Operand Decimal CSA and Improved Decimal CLA (다중 피연산자 십진 CSA와 개선된 십진 CLA를 이용한 부분곱 누산기 설계)

  • Lee, Yang;Park, TaeShin;Kim, Kanghee;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.56-65
    • /
    • 2016
  • In this paper, in order to reduce the delay and area of the partial product accumulation (PPA) of the parallel decimal multiplier, a tree architecture that composed by multi-operand decimal CSAs and improved CLA is proposed. The proposed tree using multi-operand CSAs reduces the partial product quickly. Since the input range of the recoder of CSA is limited, CSA can get the simplest logic. In addition, using the multi-operand decimal CSAs to add decimal numbers that have limited range in specific locations of the specific architecture can reduce the partial products efficiently. Also, final BCD result can be received faster by improving the logic of the decimal CLA. In order to evaluate the performance of the proposed partial product accumulation, synthesis is implemented by using Design Complier with 180 nm COMS technology library. Synthesis results show the delay of the proposed partial product accumulation is reduced by 15.6% and area is reduced by 16.2% comparing with which uses general method. Also, the total delay and area are still reduced despite the delay and area of the CLA are increased.

Implementation of Hardware Data Prefetcher Adaptable for Various State-of-the-Art Workload (다양한 최신 워크로드에 적용 가능한 하드웨어 데이터 프리페처 구현)

  • Kim, KangHee;Park, TaeShin;Song, KyungHwan;Yoon, DongSung;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.20-35
    • /
    • 2016
  • In this paper, in order to reduce the delay and area of the partial product accumulation (PPA) of the parallel decimal multiplier, a tree architecture that composed by multi-operand decimal CSAs and improved CLA is proposed. The proposed tree using multi-operand CSAs reduces the partial product quickly. Since the input range of the recoder of CSA is limited, CSA can get the simplest logic. In addition, using the multi-operand decimal CSAs to add decimal numbers that have limited range in specific locations of the specific architecture can reduce the partial products efficiently. Also, final BCD result can be received faster by improving the logic of the decimal CLA. In order to evaluate the performance of the proposed partial product accumulation, synthesis is implemented by using Design Complier with 180 nm COMS technology library. Synthesis results show the delay of the proposed partial product accumulation is reduced by 15.6% and area is reduced by 16.2% comparing with which uses general method. Also, the total delay and area are still reduced despite the delay and area of the CLA are increased.

An Implementation of Low Power MAC using Improvement of Multiply/Subtract Operation Method and PTL Circuit Design Methodology (승/감산 연산방법의 개선 및 PTL회로설계 기법을 이용한 저전력 MAC의 구현)

  • Sim, Gi-Hak;O, Ik-Gyun;Hong, Sang-Min;Yu, Beom-Seon;Lee, Gi-Yeong;Jo, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.60-70
    • /
    • 2000
  • An 8$\times$8+20-bit MAC is designed with low power design methodologies at each of the system design levels. At algorithm level, a new method for multipl $y_tract operation is proposed, and it saves the transistor counts over conventional methods in hardware realization. A new Booth selector circuit using NMOS pass-transistor logic is also proposed at circuit level. It is superior to other circuits designed by CMOS in power-delay-product. And at architecture level, we adopted an ELM adder that is known to be the most efficient in power consumption, operating frequency, area and design regularity as the final adder. For registers, dynamic CMOS single-edge triggered flip-flops are used because they need less transistors per bit. To increase the operating frequency 2-stage pipeline architecture is adopted, and fast 4:2 compressors are applied in Wallace tree block. As a simulation result, the designed MAC in 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS process is operated at 200MHz, 3.3V and consumed 35㎽ of power in multiply operation, and operated at 100MHz consuming 29㎽ in MAC operations, respectively.ly.

  • PDF

A 10-bit 10-MS/s Asynchronous SAR analog-to-digital converter with digital-to-analog converter using MOM capacitor (MOM 커패시터를 사용한 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • This paper presents a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) which consists of a digital-to-analog converter (DAC), a SAR logic, and a comparator. The designed asynchronous SAR ADC with a rail-to-rail input range uses a binary weighted DAC using metal-oxide-metal (MOM) capacitor to improve sampling rate. The proposed 10-bit 10-MS/s asynchronous SAR ADC is fabricated using a 0.18-${\mu}m$ CMOS process and its active area is $0.103mm^2$. The power consumption is 0.37 mW when the voltage of supply is 1.1 V. The measured SNDR are 54.19 dB and 51.59 dB at the analog input frequency of 101.12 kHz and 5.12 MHz, respectively.

An Integrated Methodology of Knowledge-based Rules with Fuzzy Logic for Material Handling Equipment Selection (전문가 지식 및 퍼지 이론을 연계한 물류설비 선정 방안에 관한 연구)

  • Cho Chi-Woon
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.57-73
    • /
    • 2006
  • This paper describes a methodology for automating the material handling equipment (MHE) evaluation and selection processes by combining knowledge-based rules and fuzzy multi-criteria decision making approach. The methodology is proposed to solve the MHE selection problems under fuzzy environment. At the primary stage, the most appropriate MHE type among the alternatives for each material flow link is searched. Knowledge-based rules are employed to retrieve the alternatives for each material flow link. To consider and compare the alternatives, multiple design factors are considered. These factors include both quantitative and qualitative measures. The qualitative measures are converted to numerical measures using fuzzy logic. The concept of fuzzy logic is applied to evaluation matrices used for the selection of the most suitable MHE through a fuzzy linguistic approach. Thus, this paper demonstrates the potential applicability of fuzzy theory in the MHE applications and provides a systemic guidance in the decision-making process.

  • PDF

Design of low-power OTP memory IP and its measurement (저전력 OTP Memory IP 설계 및 측정)

  • Kim, Jung-Ho;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2541-2547
    • /
    • 2010
  • In this paper, we propose a design technique which replaces logic transistors of 1.2V with medium-voltage transistors of 3.3V having small off-leakage current in repetitive block circuits where speed is not an issue, to implement a low-power eFuse OTP memory IP in the stand-by state. In addition, we use dual-port eFuse cells reducing operational current dissipation by reducing capacitances parasitic to RWL (Read word-line) and BL (Bit-line) in the read mode. Furthermore, we propose an equivalent circuit for simulating program power injected to an eFuse from a program voltage. The layout size of the designed 512-bit eFuse OTP memory IP with a 90nm CMOS image sensor process is $342{\mu}m{\times}236{\mu}m$. It is confirmed by measurement experiments on 42 samples with a program voltage of 5V that we get a good result having 97.6 percent of program yield. Also, the minimal operational supply voltage is measured well to be 0.9V.

A 10-bit 10-MS/s 0.18-㎛ CMOS Asynchronous SAR ADC with split-capacitor based differential DAC (분할-커패시터 기반의 차동 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 0.18-㎛ CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.414-422
    • /
    • 2013
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) using a split-capacitor-based differential digital-to-analog converter (DAC). SAR logic and comparator are asynchronously operated to increase the sampling frequency. The time-domain comparator with an offset calibration technique is used to achieve a high resolution. The proposed 10-bit 10-MS/s asynchronous SAR ADC with the area of $140{\times}420{\mu}m^2$ is fabricated using a 0.18-${\mu}m$ CMOS process. Its power consumption is 1.19 mW at 1.8 V supply. The measured SNDR is 49.95 dB for the analog input frequency of 101 kHz. The DNL and INL are +0.57/-0.67 and +1.73/-1.58, respectively.

Design of Multiplierless Lifting-based Wavelet Transform using Pattern Search Methods (패턴 탐색 기법을 사용한 Multiplierless 리프팅 기반의 웨이블릿 변환의 설계)

  • Son, Chang-Hoon;Park, Seong-Mo;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.943-949
    • /
    • 2010
  • This paper presents some improvements on VLSI implementation of lifting-based 9/7 wavelet transform by optimization hardware multiplication. The proposed solution requires less logic area and power consumption without performance loss compared to previous wavelet filter structure based on lifting scheme. This paper proposes a better approach to the hardware implementation using Lefevre algorithm based on extensions of Pattern search methods. To compare the proposed structure to the previous solutions on full multiplier blocks, we implemented them using Verilog HDL. For a hardware implementation of the two solutions, the logical synthesis on 0.18 um standard cells technology show that area, maximum delay and power consumption of the proposed architecture can be reduced up to 51%, 43% and 30%, respectively, compared to previous solutions for a 200 MHz target clock frequency. Our evaluation show that when design VLSI chip of lifting-based 9/7 wavelet filter, our solution is better suited for standard-cell application-specific integrated circuits than prior works on complete multiplier blocks.

A Low Power Antenna Switch Controller IC Adopting Input-coupled Current Starved Ring Oscillator and Hardware Efficient Level Shifter (입력-결합 전류 제한 링 발진기와 하드웨어 효율적인 레벨 시프터를 적용한 저전력 안테나 스위치 컨트롤러 IC)

  • Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.180-184
    • /
    • 2013
  • In this paper, a low power antenna switch controller IC is designed using a silicon-on-insulator (SOI) CMOS technology. To improve power handling capability and harmonic distortion performance of the antenna switch, the proposed antenna switch controller provides 3-state logic level such as +VDD, GND, and -VDD for the gate and body of switch of FETs according to decoder signal. By employing input-coupled current ring oscillator and hardware efficient level shifter, the proposed controller greatly reduces power consumption and hardware complexity. It consumes 135 ${\mu}A$ at a 2.5 V supply voltage in active mode, and occupies $1.3mm{\times}0.5mm$ in area. In addition, it shows fast start-up time of 10 ${\mu}s$.