• Title/Summary/Keyword: 로지스틱 회귀 모델

Search Result 194, Processing Time 0.027 seconds

Fine-Grain Weighted Logistic Regression Model (가중치 세분화 기반의 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.77-81
    • /
    • 2016
  • Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.

Value Weighted Regularized Logistic Regression Model (속성값 기반의 정규화된 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan;Jung, Mina
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1270-1274
    • /
    • 2016
  • Logistic regression is widely used for predicting and estimating the relationship among variables. We propose a new logistic regression model, the value weighted logistic regression, which comprises of a fine-grained weighting method, and assigns adapted weights to each feature value. This gradient approach obtains the optimal weights of feature values. Experiments were conducted on several data sets from the UCI machine learning repository, and the results revealed that the proposed method achieves meaningful improvement in the prediction accuracy.

Analysis on the Survivor's Pension Payment with Logistic Regression Model (로지스틱 회귀모형을 이용한 유족연금 수급 분석)

  • Kim, Mi-Jung;Kim, Jin-Hyung
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.183-200
    • /
    • 2008
  • Research for efficient management of the National Pension has been emphasized as the current society trends toward aging and low birth rate. In this article, we suggest a statistical model for effective classification and prediction of the reserve for the survivor's pension in Korea. Logistic regression model is incorporated; correct classification rate, and distribution of the posterior probability for the reserve of survivor's pension are investigated and compared with the results from the general logistic models. Assessment of predictive model is also done with lift graph, ROC curve and K-S statistic. We suggest strategies for reducing financial risks in managing and planning the pension as an application of the suggested model.

Comparison of Automatic Score Range Prediction of Korean Essays Using KoBERT, Naive Bayes & Logistic Regression (KoBERT, 나이브 베이즈, 로지스틱 회귀의 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Cha, Junwoo;Yi, Yumi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.501-504
    • /
    • 2021
  • 한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.

Box Office Hit Prediction Using Data mining and Text mining (데이터마이닝과 텍스트마이닝을 활용한 영화 흥행 예측)

  • Jo, Hyo-jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.316-318
    • /
    • 2021
  • 영화 수익에 있어 영화의 흥행 여부는 중요한 영향을 끼친다. 영화 흥행 요인은 영화 산업의 규모가 커지면서 많은 제작사들 및 투자자들이 고려해야 하는 사항이 되었다. 따라서 영화의 흥행을 예측하기 위한 많은 모델이 연구되었다. 본 연구의 목적은 선행연구에서 흥행에 유의미한 영향을 끼친다고 밝혀진 스크린 수, 감독명, 제작사명 등의 내재적인 속성과 더불어 온라인 구전 변수를 사용하여 영화 흥행 예측 모델을 만드는 것이다. 이때 기사 수, 블로그 수와 같이 온라인 구전의 크기를 나타내는 변수들을 사용하는 대신 개봉 후 첫 주간의 관람객 리뷰를 텍스트마이닝을 이용하여 전체 리뷰 중 긍정 리뷰의 비율에 따라 점수를 매긴 후 독립변수로 사용한다. 그 후, 데이터 마이닝 기법을 활용하여 만든 모델에 앞서 언급한 독립변수를 입력 값으로 사용하여 영화의 흥행을 예측한다. 최종적으로 의사결정트리와 로지스틱회귀를 수행한 결과 영화 흥행에 영향을 주는 독립변수를 찾고 모델의 성능을 평가하였다. 로지스틱회귀의 결과 관객 수, 평점이 영화의 흥행에 특히 유의한 영향을 끼치는 변수로 선정되었고 리뷰 역시 유의한 변수로 선정되었다. 이때 만들어진 모델은 약 90%의 높은 수준의 정확도를 보여주었다. 의사결정트리의 결과 관객 수가 가장 중요한 변수로 선정되었다.

Development of a Logistic Regression Model for Probabilistic Prediction of Debris Flow (토석류 산사태 예측을 위한 로지스틱 회귀모형 개발)

  • 채병곤;김원영;조용찬;김경수;이춘오;최영섭
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.211-222
    • /
    • 2004
  • In this study, a probabilistic prediction model for debris flow occurrence was developed using a logistic regression analysis. The model can be applicable to metamorphic rocks and granite area. order to develop the prediction model, detailed field survey and laboratory soil tests were conducted both in the northern and the southern Gyeonggi province and in Sangju, Gyeongbuk province, Korea. The seven landslide triggering factors were selected by a logistic regression analysis as well as several basic statistical analyses. The seven factors consist of two topographic factors and five geological and geotechnical factors. The model assigns a weight value to each selected factor. The verification results reveal that the model has 90.74% of prediction accuracy. Therefore, it is possible to predict landslide occurrence in a probabilistic and quantitative manner.

A Study on the Effects of Role Models on Differences in Entrepreneurs' Characteristics (롤 모델의 창업자 특성차이에 대한 영향에 관한 연구)

  • Joo-Heon Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Role models are also known to influence an individual's job or career choice. The positive effect of role models on entrepreneurship has already been revealed through many precious researches. It is said that people choose not only family members who are related by blood, such as parents, siblings, and relatives, but also acquaintances whom they have met through social relationships as role models. In this study, we divided into entrepreneurs with no role models other than themselves and entrepreneurs with role models. In addition, we classified parental siblings and relative role models as role models with strong ties, and acquaintance role models as role models with weak ties. We analyzed the differences in personal attributes, entrepreneurial orientation factors, and learning orientation between the entrepreneurs with role models and those without role models. Also, the differences in personal attributes, innovativeness, proactiveness, risk-taking propensity, and learning orientation between the entrepreneurs with strong ties role models and those with weak ties role models were examined. The empirical analysis results are as follows. First, it was found that the proportion of women entrepreneurs without role models is higher. Second, the entrepreneurs with role models with weak ties tend to run larger scale start-ups. Third, it was found that the entrepreneurs with role models of weak ties tend to have higher learning orientation. Fourth, gender shows the greatest influence on th absence or presence of role models. Fifth, it was found that learning orientation and startup size have the greatest influence on the decision of the role model with weak ties or that with strong ties.

  • PDF

Flood Risk Forecasting using Logistic Regression for the Han River Basin (로지스틱 회귀분석을 활용한 한강권역 홍수위험 예보기법 개발)

  • Lee, Seon Mi;Choi, Youngje;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.354-354
    • /
    • 2021
  • 2020년은 장마기간이 49일간 지속됨에 따라 침수, 산사태 등 많은 홍수피해가 발생하였다. 특히 서울에서는 한강 본류의 수위가 급격하게 증가함에 따라 둔치 및 도로 침수 피해가 발생하였다. 이처럼 하천의 수위증가로 인한 홍수피해에 대응하기 위해 홍수통제소 및 기초지자체에서는 홍수특보를 발령한다. 이 홍수특보는 수위관측소 지점별 계획홍수량의 50 %, 70 % 이상의 홍수량이 발생할 경우 홍수주의보와 홍수경보가 발령되며, 이 기준은 각 권역별로 동일하다. 하지만 2017년 의정부시에서는 중랑천 수위증가로 인해 주변 지역에 침수피해가 발생하였지만, 이때 홍수량은 계획홍수량 대비 약 30 %에 불과하였다. 이처럼 한강권역 내 하천수위 증가로 인한 홍수피해는 계획홍수량의 50 % 이내에서 발생하기도 한다. 이에 본 연구에서는 한강권역을 대상으로 현재 2단계로 발령되는 홍수특보를 3단계로 세분화하고자 하였다. 단계별 홍수량 위험기준을 산정하기 위해 과거 홍수피해 발생 이력이 있는 한강권역 내 43개의 수위관측소 지점을 선정하였으며, 지점별 홍수기 동안의 홍수량 및 피해액 자료를 수집하였다. 각 단계별 홍수량 기준을 산정하기 위해서는 로지스틱 회귀분석 방법을 활용하여 피해발생 확률을 산정하였다. 1단계 기준은 계획홍수량 대비 홍수량 비율과 홍수피해 발생여부를 고려한 이항 로지스틱 회귀분석 모델을 구축한 후 3계 도함수에 적용하여 홍수피해 발생확률이 급격하게 증가하는 특이점을 산정하였다. 2단계와 3단계 기준은 다항 로지스틱 회귀분석 중 계층형 로지스틱 회귀분석을 활용하여 지점별 피해액 비율이 60 ~ 80 %, 80 ~ 100 % 구간에 속할 확률을 산정하고, 1단계와 동일한 방법으로 특이점을 산정하였다. 그 결과 지점별로 기존 제공되고 있는 홍수특보 기준을 과거 발생한 홍수피해를 고려하여 세분화할 수 있었으며, 이 결과는 지역별 홍수피해 저감대책에 활용될 수 있을 것으로 판단된다.

  • PDF

A Study on the Prediction Model for Student Dropout (학생 중도탈락 예측 모델에 관한 연구)

  • Lee, JongHyuk;Kim, DaeHak;Gil, JoonMin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.37-40
    • /
    • 2018
  • 빅데이터 산업 부상과 함께 교육 데이터 분석 분야가 새롭게 주목받고 있다. 교육 현장에서 학습 데이터의 양과 종류는 꾸준히 증가하고 있고 이를 분석하기 위한 정보기술도 계속 발전하고 있다. 한편, 학교 교육은 사회적 성취와 밀접한 관련이 있어 사회이동의 중요한 수단이 되는 만큼 학교 교육으로부터 이탈할 위험이 있는 학생들을 조기에 발견하여 이탈을 방지하는 것은 매우 중요하다. 본 논문은 대학생의 중도탈락을 예방하기 위해 로지스틱 회귀분석과 다층 퍼셉트론 기법을 이용해 학습 데이터를 분석하여 예측 모델을 생성하고 해당 모델을 평가한다. 평가 결과, 다층 퍼셉트론 모델이 로지스틱 회귀분석 모델에 비해 정확도와 재현율은 우수하였지만 정밀도는 약간 저조하였다.

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression (로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.116-127
    • /
    • 2011
  • This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.