• Title/Summary/Keyword: 로지스틱 회귀

Search Result 1,771, Processing Time 0.036 seconds

로지스틱 회귀모형을 분석하기 위한 SPSS, SAS, STATA의 비교분석

  • Kim, Sun-Gwi;Jeong, Dong-Bin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-292
    • /
    • 2002
  • 최근 여러 분야에서 로지스틱 회귀에 대한 필요성과 그 응용이 급증하면서 이를 분석하기 위한 통계패키지가 많이 개발되어 사용되고 있다. 이 논문에서는 자료의 유형에 따라 활용할 수 있는 여러 형태의 로지스틱 회귀모형을 간단히 살펴보고, SPSS, SAS, STATA, MINITAB과 같은 통계패키지를 사용하여 로지스틱 회귀모형에 적용할 때 각각 다룰 수 있는 범위와 그 특징에 대해 다룬다.

  • PDF

Fine-Grain Weighted Logistic Regression Model (가중치 세분화 기반의 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.77-81
    • /
    • 2016
  • Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.

마코프 로지스틱 회귀모형을 이용한 강수 확률예측

  • Park, Jeong-Su
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.345-352
    • /
    • 2006
  • 현 기상의 시점에서 강수 확률 예측을 위해 가장 적절한 모형은 공간적 종속성과 시간적 종속성을 고려한 모형이 선택되어져야 한다. 보통 마크프 연쇄 모형과 예보인자를 이용하는 회귀 모형이 모두 고려된 모형을 사용한다. 본 논문에서는 강수 형태를 세 개의 상태로 나눈 경우, 즉 맑은 경우, 흐린 경우, 비온 경우로 나누어 마코프 로지스틱 회귀모형을 세우고 강수확률을 예측 할 수 있도록 하였다. 또한 서울 지역의 강수 자료를 이용하여 기존의 마코프 회귀모형과 마코프 로지스틱 회귀모형을 서로 비교하여 실제적 적용 문제를 다루었다.

  • PDF

Value Weighted Regularized Logistic Regression Model (속성값 기반의 정규화된 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan;Jung, Mina
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1270-1274
    • /
    • 2016
  • Logistic regression is widely used for predicting and estimating the relationship among variables. We propose a new logistic regression model, the value weighted logistic regression, which comprises of a fine-grained weighting method, and assigns adapted weights to each feature value. This gradient approach obtains the optimal weights of feature values. Experiments were conducted on several data sets from the UCI machine learning repository, and the results revealed that the proposed method achieves meaningful improvement in the prediction accuracy.

Logistic regression analysis for Critical Rainfall Estimation (한계강우량 산정을 위한 로지스틱 회귀분석)

  • Lee, Changhyun;Lee, Kangwon;Keum, Hojun;Kim, Byunghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.232-232
    • /
    • 2022
  • 1차원 관망해석모형과 2차원 지표면범람 해석모형을 이용한 도시지역의 실시간 홍수예·경보시스템 구축은 모형의 모의에 많은 시간이 소요되므로 한계가 있다. 또한, 연구유역에서 시나리오 강우에 대해 침수를 유발시키는 한계강우량을 1-2차원 모형의 시행착오법을 적용한 반복적인 수행을 통해 산정하는 것은 비효율적인 방법이다. 따라서, 본 연구에서는 이에 대한 해결책으로 로지스틱 회귀를 이용하여 배수분구별 침수 발생기준 강우량을 산정하고자 한다. 침수 발생 한계강우량 산정을 배수분구 단위로 제시하기 위하여 로지스틱 회귀분석을 이용하였다. 풍수해저감종합계획(2015)과 침수흔적도를 이용하여 배수분구 별 침수이력에 대한 데이터베이스를 구축하고, 이를 1-2차원 수리해석을 통한 침수심과 함께 로지스틱 회귀모형에 학습하였다. 지속시간 1시간, 10mm 강우부터 500년 빈도의 Huff 3분위 시나리오 17개를 사용하여 확률강우량을 산정하였고, 이를 1-2차원 수리해석을 위한 입력자료로 사용하였다. EPA-SWMM을 통한 1차원 도시유출해석과 FLO-2D를 통한 2차원 침수해석에서 20cm 이상의 침수심이 발생하거나 지상관측자료, 침수흔적도 및 풍수해저감종합계획에서 실제 침수가 발생했을 경우를 1, 그렇지 않은 경우를 0으로 하여 데이터베이스를 구축하여 로지스틱 회귀모형에 학습시켜 침수 발생 한계강우량을 산정하였다. 로지스틱 회귀분석을 통해 서울시 지역의 배수분구별 한계강우량을 산정할 수 있으며, 지속적으로 관측되는 강우 및 침수 발생 유무 자료를 추가함으로써 산정된 침수 한계강우량을 상회하는 강우 사상이 나타났을 시에 침수 발생 유무를 확인하여 본 연구에서 제안한 방법에 대해 검증이 가능할 것으로 보인다.

  • PDF

Variable Selection for Logistic Regression Model Using Adjusted Coefficients of Determination (수정 결정계수를 사용한 로지스틱 회귀모형에서의 변수선택법)

  • Hong C. S.;Ham J. H.;Kim H. I.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.435-443
    • /
    • 2005
  • Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.

Steal Success Model for 2007 Korean Professional Baseball Games (2007년 한국프로야구에서 도루성공모형)

  • Hong, Chong-Sun;Choi, Jeong-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.455-468
    • /
    • 2008
  • Based on the huge baseball game records, the steal plays an important role to affect the result of games. For the research about success or failure of the steal in baseball games, logistic regression models are developed based on 2007 Korean professional baseball games. The analyses of logistic regression models are compared of those of the discriminant models. It is found that the performance of the logistic regression analysis is more efficient than that of the discriminant analysis. Also, we consider an alternative logistic regression model based on categorical data which are transformed from uneasy obtainable continuous data.

Estimation of Asymmetric Bell Shaped Probability Curve using Logistic Regression (로지스틱 회귀모형을 이용한 비대칭 종형 확률곡선의 추정)

  • 박성현;김기호;이소형
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • Logistic regression model is one of the most popular linear models for a binary response variable and used for the estimation of probability function. In many practical situations, the probability function can be expressed by a bell shaped curve and such a function can be estimated by a second order logistic regression model. However, when the probability curve is asymmetric, the estimation results using a second order logistic regression model may not be precise because a second order logistic regression model is a symmetric function. In addition, even if a second order logistic regression model is used, the interpretation for the effect of second order term may not be easy. In this paper, in order to alleviate such problems, an estimation method for asymmetric probabiity curve based on a first order logistic regression model and iterative bi-section method is proposed and its performance is compared with that of a second order logistic regression model by a simulation study.

  • PDF

Flood Risk Forecasting using Logistic Regression for the Han River Basin (로지스틱 회귀분석을 활용한 한강권역 홍수위험 예보기법 개발)

  • Lee, Seon Mi;Choi, Youngje;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.354-354
    • /
    • 2021
  • 2020년은 장마기간이 49일간 지속됨에 따라 침수, 산사태 등 많은 홍수피해가 발생하였다. 특히 서울에서는 한강 본류의 수위가 급격하게 증가함에 따라 둔치 및 도로 침수 피해가 발생하였다. 이처럼 하천의 수위증가로 인한 홍수피해에 대응하기 위해 홍수통제소 및 기초지자체에서는 홍수특보를 발령한다. 이 홍수특보는 수위관측소 지점별 계획홍수량의 50 %, 70 % 이상의 홍수량이 발생할 경우 홍수주의보와 홍수경보가 발령되며, 이 기준은 각 권역별로 동일하다. 하지만 2017년 의정부시에서는 중랑천 수위증가로 인해 주변 지역에 침수피해가 발생하였지만, 이때 홍수량은 계획홍수량 대비 약 30 %에 불과하였다. 이처럼 한강권역 내 하천수위 증가로 인한 홍수피해는 계획홍수량의 50 % 이내에서 발생하기도 한다. 이에 본 연구에서는 한강권역을 대상으로 현재 2단계로 발령되는 홍수특보를 3단계로 세분화하고자 하였다. 단계별 홍수량 위험기준을 산정하기 위해 과거 홍수피해 발생 이력이 있는 한강권역 내 43개의 수위관측소 지점을 선정하였으며, 지점별 홍수기 동안의 홍수량 및 피해액 자료를 수집하였다. 각 단계별 홍수량 기준을 산정하기 위해서는 로지스틱 회귀분석 방법을 활용하여 피해발생 확률을 산정하였다. 1단계 기준은 계획홍수량 대비 홍수량 비율과 홍수피해 발생여부를 고려한 이항 로지스틱 회귀분석 모델을 구축한 후 3계 도함수에 적용하여 홍수피해 발생확률이 급격하게 증가하는 특이점을 산정하였다. 2단계와 3단계 기준은 다항 로지스틱 회귀분석 중 계층형 로지스틱 회귀분석을 활용하여 지점별 피해액 비율이 60 ~ 80 %, 80 ~ 100 % 구간에 속할 확률을 산정하고, 1단계와 동일한 방법으로 특이점을 산정하였다. 그 결과 지점별로 기존 제공되고 있는 홍수특보 기준을 과거 발생한 홍수피해를 고려하여 세분화할 수 있었으며, 이 결과는 지역별 홍수피해 저감대책에 활용될 수 있을 것으로 판단된다.

  • PDF

Exploring interaction using 3-D residual plots in logistic regression model (3차원 잔차산점도를 이용한 로지스틱회귀모형에서 교호작용의 탐색)

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.177-185
    • /
    • 2014
  • Under bivariate normal distribution assumptions, the interaction and quadratic terms are needed in the logistic regression model with two predictors. However, depending on the correlation coefficient and the variances of two conditional distributions, the interaction and quadratic terms may not be necessary. Although the need for these terms can be determined by comparing the two scatter plots, it is not as useful for interaction terms. We explore the structure and usefulness of the 3-D residual plot as a tool for dealing with interaction in logistic regression models. If predictors have an interaction effect, a 3-D residual plot can show the effect. This is illustrated by simulated and real data.