DOI QR코드

DOI QR Code

Exploring interaction using 3-D residual plots in logistic regression model

3차원 잔차산점도를 이용한 로지스틱회귀모형에서 교호작용의 탐색

  • 강명욱 (숙명여자대학교 통계학과)
  • Received : 2013.12.20
  • Accepted : 2014.01.12
  • Published : 2014.01.31

Abstract

Under bivariate normal distribution assumptions, the interaction and quadratic terms are needed in the logistic regression model with two predictors. However, depending on the correlation coefficient and the variances of two conditional distributions, the interaction and quadratic terms may not be necessary. Although the need for these terms can be determined by comparing the two scatter plots, it is not as useful for interaction terms. We explore the structure and usefulness of the 3-D residual plot as a tool for dealing with interaction in logistic regression models. If predictors have an interaction effect, a 3-D residual plot can show the effect. This is illustrated by simulated and real data.

로지스틱회귀모형에서 설명변수만으로는 충분히 설명이 되지 못하고 설명변수의 변환된 형태인 이차항 또는 교호작용항이 필요한 경우가 있다. 설명변수가 두 개이고 조건부 분포가 이변량 정규분포를 따르는 경우 로지스틱회귀모형에서는 기본적으로 이차항과 교호작용항이 모형에 포함되어야 한다. 하지만 조건부 분포의 분산과 상관계수에 따라 이차항과 교호작용항이 필요하지 않게 되는 경우도 있다. 분산이나 상관계수에 대한 정보는 산점도를 보고 대체적인 판단이 가능하지만 교호작용항의 필요성을 판단하기가 쉽지 않다. 본 논문에서는 3차원 잔차산점도를 이용한 교호작용의 탐색방법을 제시하고 이 방법을 실제 자료에 적용시켜본다.

Keywords

References

  1. Cook, R. D. and Weisberg, S. (1994). An introduction to regression graphics, Wiley, New York.
  2. Cook, R. D. and Weisberg, S. (1999). Applied regression including computing and graphics, Wiley, New York.
  3. Cook, R. D. and Weisberg, S. (1989). Regression diagnostics with dynamic graphics. Technometrics, 31, 277-311.
  4. Kahng, M. (2005). Exploring interaction in generalized linear models. Journal of the Korean Data & Information Society, 16, 13-18.
  5. Kahng, M., Kim, B. and Hong, J. (2010). Graphical regression and model assessment in logistic model. Journal of the Korean Data & Information Society, 21, 21-32.
  6. Kahng, M. and Shin, E. (2012). A study on log-density with log-odds graph for variable selection in logistic regression. Journal of the Korean Data & Information Society, 23, 99-111. https://doi.org/10.7465/jkdi.2012.23.1.099
  7. Kahng, M. and Yoon, J. E. (2013). Log-density ratio with two predictors in logistic regression model. The Korean Journal of Applied Statistics, 26, 141-149. https://doi.org/10.5351/KJAS.2013.26.1.141
  8. Kay, R. and Little, S. (1987). Transformations of the explanatory variables in the logistic regression model for binary data. Biometrika, 74, 495-501. https://doi.org/10.1093/biomet/74.3.495
  9. Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal of Royal Statistical Society A, 135, 370-384. https://doi.org/10.2307/2344614
  10. Scrucca, L. and Weisberg, S. (2004). A simulation study to investigate the behavior of the log-density ratio under normality. Communication in Statistics Simulation and Computation, 33, 159-178. https://doi.org/10.1081/SAC-120028439