• Title/Summary/Keyword: 로봇이동

Search Result 2,256, Processing Time 0.036 seconds

Human-friendly Care Robot System for the Elderly (노약자를 위한 인간 친화형 간호 로봇 시스템)

  • Hong, Hyun-Seok;Yoo, Dong-Hyun;Kwon, Han-Jo;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.126-129
    • /
    • 2002
  • 도우미로봇은 혼자 힘으로 걷기 어려운 노약자를 보조하는 보행 보조 기능과 다양한 오락 기능을 수행하는 로봇이다. 이 로봇은 음원 위치 추정기법에 의해서 어느 방향에서 소리가 발생하였는지 알아내고 그 방향으로 머리를 회전한다. 로봇의 머리에는 CCD카메라가 장착되어 있어서 카메라로부터 들어오는 영상에서 사람의 얼굴을 찾고 그 사람이 있는 곳까지 자율 주행기능에 의해서 장애물을 회피하며 이동한다. 사용자의 앞까지 이동하면 로봇은 이동을 멈추고 사용자로부터 명령을 받을 때까지 대기한다. 노약자는 로봇의 전반부에 부착되어 있는 터치스크린을 이용하여 로봇에게 다양한 명령을 내릴 수 있다. 로봇은 명령에 따라 보행 보조 작업을 수행하거나 전자메일, 음악, 영화 등 다양한 엔터테인먼트 서비스를 수행하게 된다.

  • PDF

Image Transmission System Development for DARS Robot (DARS 로봇에서의 영상 전송 시스템 개발)

  • Lee Dong-Hoon;Kim Dae-Wook;Sim Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.229-232
    • /
    • 2005
  • 본 논문에서는 다수의 로봇이 협동 제어 및 분산 제어를 목적으로 고안된 DARS 로봇의 마이크로 컨트롤러가 적은 메모리를 내장하여 영상 처리와 같은 많은 데이터를 처리하는 부분에서는 여러 제약이 생기는 문제점을 해결하기 위하여 DARS 로봇의 영상 처리 및 전송에 있어 데이터의 전송량을 줄이는 방법으로 영상 압축 방식을 사용하여 영상 압축 데이터의 전송을 구현하였다. 또한 DARS 로봇이 이동하면서 특정 미션의 수행이 가능하도록 배터리로 정전압을 공급하고, 물체를 감지하는데 있어 사각이 없이 $360^{\circ}$전 방향을 감지하도록 적외선 센서부를 설계하였다. DARS 로봇의 이동이 용이하도록 설계된 모터 구동부는 센서에 감지되는 물체의 거리에 따라 DARS 로봇이 속도를 정밀하게 가$\cdot$감속 제어를 하고, 마이컴 제어부는 카메라로부터 입력되 영상 신호를 압축 알고리즘을 이용하여 압축하고, 압축된 데이터를 컴퓨터로 전송한다. 컴퓨터에서는 입력된 영상을 Visual c++을 사용하여 화면 표시 및 DARS 로봇을 제어 할 수 있도록 구현하였다.

  • PDF

The design of 6-axis robot arm with intelligent object detection and object movement function (지능적 객체검출과 물체이동 기능을 갖는 6축 로봇 팔의 설계)

  • Kim, Kyu-Tae;Koo, Mo-Se;Ko, Young-Jun;Park, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.417-420
    • /
    • 2021
  • 본 논문은 서비스 로봇 분야에서 활용 가능한, ROS기반의 객체검출과 이동 기능을 갖는 6축 로봇 팔의 설계 방법 및 성능 개선결과를 제시한다. 기구설계, 물체검출, 3D좌표생성을 통한 실시간 역 기구학 해석 방법 및 지능적 모터 및 센서 제어 방법 등에 대해 제시하였다. 특히 영상과 센서기반 처리를 통해 고정된 작업반경 내 물체를 지능적으로 검출하고 목표지점까지 이동시키며, ROS기반의 추출된 정보를 이용하여 동작의 오차를 최소화하기 위해 다관절 로봇 팔의 운동을 최적화하여 설계하였으며 다양한 관련 실험을 통해 주요성능을 검증하였다.

Correction of Traveling Error for a Mobile Robot Using a Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 주행 오차 보정)

  • 박병규;이기성
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.283-286
    • /
    • 1997
  • 일반적으로 직진 경로를 주행하는 이동로봇의 오차 보정을 위해서는 PI 제어기의 계수 보정이 필요하다. 본 논문에서는 직진 경로를 주행하는 이동로봇의 양쪽 바퀴에서 얻어진 엔코더의 값으로 측정하고, 측정되어진 엔코더의 값을 이용하여 방향과 움직임의 오차를 보정해주는 알고리즘을 PI제어기와 유전알고리즘을 사용하여 최적의 파라미터를 구할 수 있는 방법을 제안하였다.

  • PDF

Passive RFID Based Efficient Mobile Robot Localization (수동 RFID 기반 효율적인 이동로봇 위치 추정)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.67-68
    • /
    • 2008
  • 본 논문에서는 수동 RFID 환경 아래서 공간/시간 정보를 효과적으로 활용하여, 기존 연구결과에 비해 추정 오차를 감소시킴과 동시에 경제성을 향상시키는 새로운 위치 추정 기법을 개발하고자 한다. 기본적으로 이동로봇이 일련의 직선 구간을 구간별로 정속 주행하며 또한 매 순간 이동로봇에 의해 감지되는 태그의 수는 한 개 이하라고 가정한다. 이러한 가정 아래서, 이동로봇이 위치 정보가 알려진 태그의 감지 범위를 경유하는 과정에서의 시간 정보를 이용하여, 주어진 구간에 대해서 이미 알려져 있는 지점을 출발하여 정속으로 직선 주행하는 이동로봇의 속도 및 위치를 추정하는 알고리즘을 개발한다.

  • PDF

Design on a Mobile Robot with Distributed Control based on CAN Protocol (CAN 통신기반 분산제어를 이용한 이동로봇 설계)

  • Choo, Yeon-Gyu;Kim, Bong-Gi;Jang, Ju-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.864-866
    • /
    • 2012
  • 이동로봇은 동작 특성상 다수의 하드웨어로 구성되기 때문에 분산제어 방식으로 동작하는 것이 필수적이므로 네트워크 기반의 인터페이스 설계가 중요하다. 다양한 네트워크 중 전장에서 산업현장에 이르기까지 여러 분야에 적용중인 CAN 버스 통신을 적용하여 이동로봇을 구성하는 각 하드웨어의 독립성과 장애물 판단, 모터 구동 등을 정확하게 제어함으로써 자율주행에 따른 이동로봇의 성능을 향상시키고 하드웨어 추가에도 대응이 가능하도록 설계하였다.

  • PDF

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Lee Dong-Wook;Sim Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.389-392
    • /
    • 2005
  • 어떤 미로환경 내에서 로봇이 스스로 목표물을 찾기 위해서는 탐색경로를 결정하는 알고리즘이 요구된다. 본 논문에서는 'Y'형 미로에서 목표물을 탐색하기 위하여 Dynamic Programming을 적용한 미로 탐색 알고리즘을 제안한다. 실험에서는 규격화된 미로 블록을 만들고, 먼저 기존에 연구 되었던 자수법 알고리즘을 자율이동 로봇에 적용해 'Y'형 미로 블록을 탐색하게 한다. 그리고 본 논문에서 제시한 Dynamic Programming을 이용한 미로탐색 알고리즘을 자율이동로봇에 적용하고 미로를 탐색한 후 이두가지 알고리즘을 적용한 로봇의 주행 결과를 각각 비교해 봄으로서 Dynamic Programming을 적용한 자율이동로봇의 미로탐색 방법의 성능을 확인한다.

  • PDF

A study on rotation angle Estimation of HMD for controlling the mobile robot tele-operation (이동로봇 원격제어를 위한 HMD의 방향각 측정 알고리즘에 관한 연구)

  • Yoon, Seung-Jun;Ro, Young-Shick;Kang, Hui-Jun;Seo, Young-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.89-90
    • /
    • 2008
  • 본 논문은 네트워크를 통해서 이동로봇을 원격제어하기 위해 필요한 비전 시스템에서 HMD(Head Mounted Display)의 방향각 측정 알고리즘에 관한 연구이다. 우선 이 이동로봇 원격제어 시스템은 AP와 무선랜을 이용하여 독립 무선 네트워크를 구축하였고 이동로봇의 주변 환경을 레이저 센서와 스테레오 카메라를 이용하여 사용자에게 정보를 전송한다. 스테레오 카메라를 통해 전송된 영상 정보는 HMD를 통하여 볼 수 있다. 실시간으로 영상 카메라에 의해 측정 된 HMD의 회전 각도는 pen-tilt에 전송되어 HMD가 회전한 만큼 pen-tilt도 회전하여 이동로봇의 주변 환경 영상정보를 얻을 수 있는 알고리즘을 제안하였다.

  • PDF

Autonomous Navigation of a Mobile Robot using WLAN and GPS Sensors (WLAN과 GPS 센서를 이용한 이동로봇의 자율주행)

  • Kim, Kee-Min;Kim, Jae-Oh;Chang, Ki-Heung;Jeong, Gu-Min;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1810_1811
    • /
    • 2009
  • 자율주행 로봇은 자신위치와 장애물의 위치 등 주변 환경을 인지하여 원하는 지점까지 스스로 이동 및 임무 수행이 가능한 로봇 이다. 목표위치를 탐색하기 위하여 GPS 및 초음파 센서를 이용하여 이동 방향 설정 및 주변 장애물 위치를 파악할 수 있도록 하였다. 특히, WLAN을 이용하여 이동 로봇에 대한 위치 정보의 설정 및 위치 데이터의 교신이 가능하도록 하였고 이동로봇을 이용한 실제 실험을 통하여 원하는 위치 탐색과 장애물 회피가 효과적으로 수행됨을 확인한다.

  • PDF

Hardware Design Methods for Segway Type 2-Wheeled Mobile Robots (세그웨이형 2륜 이동로봇의 하드웨어 설계방법)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, hardware design methods for segway type 2-wheeled mobile robots are presented. Basically five guide lines are offered to build robots properly for the purpose of experiments; motor selection, battery selection, MCU selection, motor placement, and construction of body. The robots built with these five guide lines will give the best test environment to gain meaningful results in experiments as a precise and exact test-bed.