• Title/Summary/Keyword: 로그 처리

Search Result 652, Processing Time 0.021 seconds

Design and Implementation of a High-Performance Index Manager in a Main Memory DBMS (주기억장치 DBMS를 위한 고성능 인덱스 관리자의 설계 및 구현)

  • Kim, Sang-Wook;Lee, Kyung-Tae;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7B
    • /
    • pp.605-619
    • /
    • 2003
  • The main memory DBMS(MMDBMS) efficiently supports various database applications that require high performance since it employs main memory rather than disk as a primary storage. In this paper, we discuss the index manager of the Tachyon, a next-generation MMDBMS. Recently, the gap between the CPU processing and main memory access times is becoming much wider due to rapid advance of CPU technology. By devising data structures and algorithms that utilize the behavior of the cache in CPU, we are able to enhance the overall performance of MMDBMSs considerably. In this paper, we address the practical implementation issues and our solutions for them obtained in developing the cache-conscious index manager of the Tachyon. The main issues touched are (1) consideration of the cache behavior, (2) compact representation of the index entry and the index node, (3) support of variable-length keys, (4) support of multiple-attribute keys, (5) support of duplicated keys, (6) definition of the system catalog for indexes, (7) definition of external APIs, (8) concurrency control, and (9) backup and recovery. We also show the effectiveness of our approach through extensive experiments.

부도시의 시장반응과 후속 기업재건 여부와의 관계

  • Park, Ju-Cheol;Lee, Nam-U
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.217-242
    • /
    • 2005
  • 본 연구에서는 부도기업의 부도 후 회생여부와 부도발생시의 주식시장의 반응과의 관계를 조사하였다. 즉 증권시장이 부도기업의 사후적인 회생 또는 회생실패에 대한 통찰력을 부도시에 이미 갖고 있는지를 부도처리시의 주가반응을 분석함으로써 검정하고자 하는 것이다. 이를 위하여 외환위기 후 상장기업의 부도가 빈발하였던 1998년에서 2000년 사이에 부도가 발생한 상장회사 55개 기업을 대상으로 후에 회생한 기업(31개기업)과 그렇지 못한 기업(24개 기업)을 구분하여 후에 회생한 기업의 부도시의 주가반응이 회생하지 못한 기업의 부도시의 주가반응보다 덜 부정적이었는지를 검정하였다. 실증분석 결과 부도기업 중 후에 회생한 기업(31개기업)의 분석기간 ($-10{\sim}+10$)중 평균초과수익률과 누적평균초과수익률이 비회생기업(24개기업)의 그것에 대하여 유의한 (+)의 차이가 나타나지 않았다. 또한 부도기업의 누적초과수익률을 종속변수로 하고 회생여부를 나타내는 더미변수, 전년도감사의견이 적정의견인지의 여부, 부채비율, 총자산(억원) 자연 로그값, 사전적 폭로정보 대용변수로서의 지난 1년간 주가반응을 의미하는 (-230, -11)윈도우 누적초과수익률을 독립변수로 하여 다중회귀분석을 실시하였으나 부도후 회생여부를 나타내는 더미변수의 회귀계수는 유의적이지 않았다. 따라서 초과수익률 차이분석결과 회생기업의 부도시의 주가반응이 비회생기업의 그것에 비하여 유의한 (+)의 차이가 없고, 또한 회귀분석 결과 부도시의 초과수익률과 부도후 회생여부는 유의한 관계가 없으므로 부도처리시의 주가반응에서 후에 회생하는 기업이 그렇지 않은 기업보다 덜 부정적일 것이다라는 연구가설은 기각된다.등에 대한 평가기준의 재정립이 강구되어야 할 것이다.한 변동성에서 큰 위험프리미엄이라는 연결고리를 거쳐 코리아 디스카운트라는 현상으로 귀착되는 현상에 주목하고 있는 본 연구의 결과가 실무에서 유용하게 사용됨은 물론이요 또한 본 연구의 방법론 자체가 매우 정교하고 포괄적이어서 금융시계열을 포함한 다른 여러 분야에 크게 응용될 수 있는 외부효과도 기대된다.R 효과는 전통적 의미의 일반적으로 낮은 PER종목이 초과수익률을 내는 것이 아니라, 기업규모가 크더라도 그 기업의 개별특성을 고려했을 때 이와 비교해 상대적으로 PER가 낮은 종목에 투자하면 초과수익을 낼 수 있음을 의미한다. 발견하였다.적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.서, Loser포트폴리오를 매수보유하는 반전거래전략이 Winner포트폴리오를 매수보유하는 계속거래전략보다 적합한 전략임을 알 수 있었다. 다섯째, Loser포트폴리오와 Winner포트폴리오를 각각 투자대상종목으로써 매수보유한 반전거래전략과 계속거래 전략에 대한 유용성을 비교검증한 Loser포트폴리오와 Winner포트폴리오 각각의 1개월 평균초과수익률에 의하면, 반전거래전략의 Loser포트폴리오가 계속거래전략의 Winner포트폴리오보다 약 5배정도의 높은 1개월 평균초과수익률을 실현하였고, 반전거래전략의 유용성을 충분히 발휘하기 위하여 장단기의 투자기간을 설정할 경우에 6개월에서 36개월로 이동함에 따라 6개월부터 24개월까지는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을

  • PDF

WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘)

  • Yoon, Sun-Hee;Kim, Sam-Keun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.187-198
    • /
    • 2004
  • The World-Wide Web is the largest distributed Information space and has grown to encompass diverse information resources. However, although Web is growing exponentially, the individual's capacity to read and digest contents is essentially fixed. From the view point of Web users, they can be confused by explosion of Web information, by constantly changing Web environments, and by lack of understanding needs of Web users. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and Information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent k-Pagesets. We develop a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. Our algorithms provide Web users with new page views, which Include pagesets to recommend, so that users can effectively traverse its Web site. The main distinguishing factors are both a point consistently spanning schemes applying inter-pages association for mining frequent traversal patterns and a point proposing the most efficient tree model. Our experimentation with two real data sets, including Lady Asiana and KBS media server site, clearly validates that our method outperforms conventional methods.

Multi User-Authentication System using One Time-Pseudo Random Number and Personal DNA STR Information in RFID Smart Card (RFID 스마트카드내 DNA STR Information과 일회용 의사난수를 사용한 다중 사용자 인증시스템)

  • Sung, Soon-Hwa;Kong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.747-754
    • /
    • 2003
  • Thia paper suggests a milti user-authentication system comprises that DNA biometric informatiom, owner's RFID(Radio Frequency Identification) smartcard of hardware token, and PKI digital signqture of software. This system improved items proposed in [1] as follows : this mechanism provides one RFID smartcard instead of two user-authentication smartcard(the biometric registered seal card and the DNA personal ID card), and solbers user information exposure as RFID of low proce when the card is lost. In addition, this can be perfect multi user-autentication system to enable identification even in cases such as identical twins, the DNA collected from the blood of patient who has undergone a medical procedure involving blood replacement and the DNA of the blood donor, mutation in the DNA base of cancer cells and other cells. Therefore, the proposed system is applied to terminal log-on with RFID smart card that stores accurate digital DNA biometric information instead of present biometric user-authentication system with the card is lost, which doesn't expose any personal DNA information. The security of PKI digital signature private key can be improved because secure pseudo random number generator can generate infinite one-time pseudo randon number corresponding to a user ID to keep private key of PKI digital signature securely whenever authenticated users access a system. Un addition, this user-authentication system can be used in credit card, resident card, passport, etc. acceletating the use of biometric RFID smart' card. The security of proposed system is shown by statistical anaysis.

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Implementation of a DB-Based Virtual File System for Lightweight IoT Clouds (경량 사물 인터넷 클라우드를 위한 DB 기반 가상 파일 시스템 구현)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.311-322
    • /
    • 2014
  • IoT(Internet of Things) is a concept of connected internet pursuing direct access to devices or sensors in fused environment of personal, industrial and public area. In IoT environment, it is possible to access realtime data, and the data format and topology of devices are diverse. Also, there are bidirectional communications between users and devices to control actuators in IoT. In this point, IoT is different from the conventional internet in which data are produced by human desktops and gathered in server systems by way of one-sided simple internet communications. For the cloud or portal service of IoT, there should be a file management framework supporting systematic naming service and unified data access interface encompassing the variety of IoT things. This paper implements a DB-based virtual file system maintaining attributes of IoT things in a UNIX-styled file system view. Users who logged in the virtual shell are able to explore IoT things by navigating the virtual file system, and able to access IoT things directly via UNIX-styled file I O APIs. The implemented virtual file system is lightweight and flexible because it maintains only directory structure and descriptors for the distributed IoT things. The result of a test for the virtual shell primitives such as mkdir() or chdir() shows the smooth functionality of the virtual file system, Also, the exploring performance of the file system is better than that of Window file system in case of adopting a simple directory cache mechanism.

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

The Improvement Plan for Indicator System of Personal Information Management Level Diagnosis in the Era of the 4th Industrial Revolution: Focusing on Application of Personal Information Protection Standards linked to specific IT technologies (제4차 산업시대의 개인정보 관리수준 진단지표체계 개선방안: 특정 IT기술연계 개인정보보호기준 적용을 중심으로)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.1-13
    • /
    • 2021
  • This study tried to suggest ways to improve the indicator system to strengthen the personal information protection. For this purpose, the components of indicator system are derived through domestic and foreign literature, and it was selected as main the diagnostic indicators through FGI/Delphi analysis for personal information protection experts and a survey for personal information protection officers of public institutions. As like this, this study was intended to derive an inspection standard that can be reflected as a separate index system for personal information protection, by classifying the specific IT technologies of the 4th industrial revolution, such as big data, cloud, Internet of Things, and artificial intelligence. As a result, from the planning and design stage of specific technologies, the check items for applying the PbD principle, pseudonymous information processing and de-identification measures were selected as 2 common indicators. And the checklists were consisted 2 items related Big data, 5 items related Cloud service, 5 items related IoT, and 4 items related AI. Accordingly, this study expects to be an institutional device to respond to new technological changes for the continuous development of the personal information management level diagnosis system in the future.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Exploring the Motivational Factors Influencing on Learner Participation of Adult Learners in e-Learning (성인학습자의 이러닝 학습참여에 대한 학습동기 요인 연구)

  • JungHyun Park;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2024
  • Since e-learning is conducted based on the learner's autonomy, motivation to continuously participate is crucial for success in e-learning. As the number of adult learners participating in lifelong education increases, it is necessary to study learner participation and the motivating factors. Drawing upon the Expectancy-Value Theory and Self-Regulated Learning Theory, this study analyzed the influence of motivational factors (value, costs, cognitive regulation, and scheduling) on learner participation. An e-learning program was implemented on MoodleCloud, and learners completed a survey before going through the program. Regression analysis was conducted using the survey response data along with the participation score, calculated using the log data. The results of the analysis demonstrated that value and scheduling significantly influenced learner participation, with gender differences found in value. This means that as adult learners perceive higher value in the e-learning program and possess better scheduling skills, they are more likely to participate. These findings can be utilized in developing teaching and learning strategies for both learners and instructors, ultimately helping to prevent dropout in e-learning.