• Title/Summary/Keyword: 레인지 데이터

Search Result 569, Processing Time 0.028 seconds

A study on the datalink Interface between fighter jet RADAR and BVR AA guided missile (전투기 레이다의 시계 외 중거리 공대공 유도탄 데이터링크 연동방안 연구)

  • Yong-min Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.453-456
    • /
    • 2023
  • Fighter jets employ guided missiles equipped with seekers to counter enemy air threats. Short range guided missiles(SRM) usually carry infrared(IR) seekers and are used to engage targets within visual range. On the other hand, medium range guided missiles(MRM) often utilize radio frequency(RF) seekers to engage targets beyond visual range. Medium range guided missiles do not activate their seekers until they reach the detection range of the seeker, and the aircraft's radar guides them for a certain distance. This guidance method is called Missile Data Link(MDL), and it can be implemented in either one-way or two-way communication modes, depending on the missile's communication system. In this paper, we discuss MDL based on these two communication modes, along with the integration of RADAR, mission computers, and guided missiles.

Machine Learning Algorithms Evaluation and CombML Development for Dam Inflow Prediction (댐 유입량 예측을 위한 머신러닝 알고리즘 평가 및 CombML 개발)

  • Hong, Jiyeong;Bae, Juhyeon;Jeong, Yeonseok;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.317-317
    • /
    • 2021
  • 효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.

  • PDF

Predicting the number of confirmed COVID-19 daily using machine learning models (머신러닝 모델을 이용한 일일 COVID-19 확진자 수 예측)

  • Min, song-ha;Oh, myung-ho;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.697-700
    • /
    • 2022
  • Recently, as of March 18, 2022, Corona-19 (COVID-19) has 8,250,000 confirmed persons and 11,481 deaths, and has been increasing since the outbreak in 2020. By limiting the number of people and time, we are showing how our daily life changes depending on the number of confirmed coronas. Therefore, in this study, we implemented an algorithm that predicts the number of confirmed people the next day to help minimize damage to the limits of daily life. This algorithm is an algorithm that predicts the number of confirmed persons on the next day using the number of confirmed persons for 3 days. It is predicted by adding the RNN and Dense layers using the Sequential model, and the number of people is subdivided by region. In order to predict the limit, we matched the personnel limit based on the number of fixed persons per day based on Seoul.

  • PDF

Efficient Methods of Tactical Situation Display for Tactical Analysis Tool of P-3C Maritime Patrol Aircraft (P-3C 해상초계기 전술분석도구를 위한 전술 상황표시기의 효율적 전시 기법)

  • Byoung-Kug Kim;Yonghoon Cha;Sung-Hwa Hong;Jaeho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.495-501
    • /
    • 2023
  • P-3C/K aircraft for maritime patrols that Republic of Korea Navy is using, is equipped with a variety of sensors and communication devices. Collected data from the aircraft is managed as tactical information by flight operators and stored. When the flight mission is completed, this information is transferred to tactical support center on the ground and played back or used for follow-up work through a analysis tool. During a flight mission, there are tens of thousands of detection objects within an hour in KADIZ (Korea air defense identification zone). In contrast, in TSD (tactical situation display), which displays a map when using the analysis tool, all detected objects are expressed as symbols. The increase in display symbols has a significant impact on the TSD image updating and consequently interferes with the smooth operation of operators. In this paper, we propose applying multiple threads and multiple layers to improve the performance of existing TSD. And the performance improvement is proven through the execution results.

Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence (인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.873-879
    • /
    • 2023
  • This study explored the use of artificial intelligence(AI) to detect foreign bodies in chest X-ray images. Medical imaging, especially chest X-rays, plays a crucial role in diagnosing diseases such as pneumonia and lung cancer. With the increase in imaging tests, AI has become an important tool for efficient and fast diagnosis. However, images can contain foreign objects, including everyday jewelry like buttons and bra wires, which can interfere with accurate readings. In this study, we developed an AI algorithm that accurately identifies these foreign objects and processed the National Institutes of Health chest X-ray dataset based on the YOLOv8 model. The results showed high detection performance with accuracy, precision, recall, and F1-score all close to 0.91. Despite the excellent performance of AI, the study solved the problem that foreign objects in the image can distort the reading results, emphasizing the innovative role of AI in radiology and its reliability based on accuracy, which is essential for clinical implementation.

Resource-Efficient Object Detector for Low-Power Devices (저전력 장치를 위한 자원 효율적 객체 검출기)

  • Akshay Kumar Sharma;Kyung Ki Kim
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2024
  • This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

Update of Digital Map by using The Terrestrial LiDAR Data and Modified RANSAC (수정된 RANSAC 알고리즘과 지상라이다 데이터를 이용한 수치지도 건물레이어 갱신)

  • Kim, Sang Min;Jung, Jae Hoon;Lee, Jae Bin;Heo, Joon;Hong, Sung Chul;Cho, Hyoung Sig
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2014
  • Recently, rapid urbanization has necessitated continuous updates in digital map to provide the latest and accurate information for users. However, conventional aerial photogrammetry has some restrictions on periodic updates of small areas due to high cost, and as-built drawing also brings some problems with maintaining quality. Alternatively, this paper proposes a scheme for efficient and accurate update of digital map using point cloud data acquired by Terrestrial Laser Scanner (TLS). Initially, from the whole point cloud data, the building sides are extracted and projected onto a 2D image to trace out the 2D building footprints. In order to register the footprint extractions on the digital map, 2D Affine model is used. For Affine parameter estimation, the centroids of each footprint groups are randomly chosen and matched by means of a modified RANSAC algorithm. Based on proposed algorithm, the experimental results showed that it is possible to renew digital map using building footprint extracted from TLS data.

Experimental and Comparative Analysis about Discharge Coefficient of Sharp-crested Side Weir (횡월류예연위어 유량계수에 관한 실험 비교 연구)

  • Rhee, Dong-Sop;Kim, Chang-Wan;Lee, Dong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1295-1299
    • /
    • 2006
  • 횡월류위어는 홍수 피해 경감을 위해 계획되는 방수로나 저류지의 유입부에 주로 사용된다. 따라서 이러한 횡월류위어를 통해 방수로나 저류지로 월류되는 월류량을 정확히 예측하는 것은 이러한 시설의 홍수 피해 경감 능력을 예측하는데 있어 매우 중요하다. 횡월류위어를 통해 흐르는 흐름은 매우 복잡하기 때문에 일반적으로 이러한 흐름을 분석하는 것은 매우 어렵다. 따라서 대부분의 횡월류위어 유량계수 공식은 De Marchi의 해석해와 다양한 실험 자료에 근거하여 제시되고 있다. 따라서 지금까지 횡월류위어 유량계수에 대하여 많은 공식이 제안되어 왔지만, 대부분의 공식이 유사한 형태를 가지고 있으며, 횡월류위어의 상류에서의 프루드수$(Fr_1)$를 제일 중요한 설계 인자로 고려하고 있다. 그러나 최근 횡월류위어에 대한 연구가 점차 발전됨에 따라 횡월류위어 상류에서의 프루드수 외에도 위어높이와 횡월류위어 상류 수심의 비(h/y), 그리고 횡월류위어의 길이와 본류 폭의 비(L/B) 등이 고려되고 있다. 그 중에서 L/B 의 효과는 점차 중요하게 고려되고 있다. 그러나 대부분의 연구자들이 사용한 실험 장비들은 상 대적으로 높은 L/B 조건을 가지는데 반하여, 현재 국내에서 계획되고 있는 천변저류지 등에 설계된 횡월류위어의 설계 범위는 대체로 $1/10{\sim}1/200$이므로 기존 연구자들의 실험 범위와 매우 다르다고 할 수 있다. 따라서 본 연구에서는 상대적으로 폭이 넓은 실험 수로를 이용하여 횡월류예연위어의 유량 계수에 대한 실험을 수행하였다. 지금까지의 실험 결과에 의하면 동일한 실험 조건에 대해서 기존 연구자들에 의해서 제안된 공식으로 계산한 유량계수 보다 측정된 자료를 이용하여 계산한 유량계수의 값이 상대적으로 더 큰 것 으로 나타났다. 통해 배수될 때 암석이 머금고 있는 물로 인해 추가적으로 발생하는 중력은 다른 재료가 가지지 못한 화산석의 또 다른 장점이라 할 수 있다.서는 자료변환 및 가공이 필요하다. 즉, 각 상습침수지구에 필요한 지형도는 국립지리원에서 제작된 1:5,000 수치지형도가 있으나 이는 자료가 방대하고 상습침수지구에 필요하지 않은 자료들을 많이 포함하고 있으므로 상습침수지구의 데이터를 인터넷을 통해 서비스하기 위해서는 많은 불필요한 레이어의 삭제, 서비스 속도를 고려한 데이터의 일반화작업, 지도의 축소.확대 등 자료제공 방식에 따른 작업 그리고 가시성을 고려한 심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는

  • PDF