Radar is an essential sensor component in autonomous vehicles, and the market for radar applications in this context is steadily expanding with a growing variety of products. In this study, we aimed to enhance the stability and performance of radar systems by developing and evaluating a radar performance prediction model that can predict radar defects. We selected seven machine learning and deep learning algorithms and trained the model with a total of 49 input data types. Ultimately, when we employed an ensemble of 17 models, it exhibited the highest performance. We anticipate that these research findings will assist in predicting product defects at the production stage, thereby maximizing production yield and minimizing the costs associated with defective products.
Products of Wi-Fi devices in recent years offer higher throughput and have longer signal coverage which also bring unnecessary signal interference to neighboring wireless networks, and result in decrease of network throughput. Signal interference is an inevitable problem because of the broadcast nature of wireless transmissions. However it could be optimized by reducing signal coverage of wireless devices. On the other hand, smaller signal coverage also means lower transmission power and lower data throughput. Therefore, in this paper, we analyze the relationship among signal strength, coverage and interference of Wi-Fi networks, and as a tradeoff between transmission power and data throughput, we propose a range-aware Wi-Fi network scheme which controls transmission power according to positions and RSSI(Received Signal Strength Indication) of Wi-Fi devices and analyze the efficiency of the proposed scheme by simulation.
Journal of the Korea institute for structural maintenance and inspection
/
v.14
no.4
/
pp.86-93
/
2010
The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.21-24
/
2020
대용량의 데이터를 시각적 요소를 활용하여 눈으로 볼 수 있도록 하는 데이터 시각화에 대한 관심이 꾸준히 증가하고 있다. 데이터 시각화는 데이터의 전처리를 거쳐 차원 축소를 하여 데이터의 분포를 시각적으로 확인할 수 있다. 공개된 데이터 셋은 캐글(kaggle), 아마존 AWS 데이터셋(Amazon AWS datasets), UC 얼바인 머신러닝 저장소(UC irvine machine learning repository)등 다양하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 딥러닝을 이용하여 다양한 환경 및 조건에서의 학습을 통한 데이터분석 및 학습 결과가 좋을 경우와 그렇지 않을 경우의 마지막 레이어의 특징 벡터를 시각화하여 직관적인 결과를 확인 가능 하도록 하였다. 또한 다차원 입력 데이터를 시각화 함으로써 시각화 된 결과가 딥러닝의 학습결과와 연관이 있는지를 확인 한다.
A vast amount of riverine spatial dataset have recently become available, which include hydrodynamic and morphological survey data by advanced instrumentations such as ADCP (Acoustic Doppler Current Profiler), transect measurements obtained through building various river basic plans, riverine environmental and ecological data, optical images using UAVs, river facilities like multi-purposed weir and hydrophilic sectors. In this regard, a standardized data model has been subsequently required in order to efficiently store, manage, and share riverine spatial dataset. Given that riverine spatial dataset such as river facility, transect measurement, time-varying observed data should be synthetically managed along specified river network, conventional data model showed a tendency to maintain them individually in a form of separate layer corresponding to each theme, which can miss their spatial relationship, thereby resulting in inefficiency to derive synthetic information. Moreover, the data model had to be significantly modified to ingest newly produced data and hampered efficient searches for specific conditions. To avoid such drawbacks for layer-based data model, this research proposed a relational data model in conjunction with river network which could be a backbone to relate additional spatial dataset such as flowline, river facility, transect measurement and surveyed dataset. The new data model contains flexibility to minimize changes of its structure when it deals with any multi-dimensional river data, and assigned reach code for multiple river segments delineated from a river. To realize the newly developed data model, Seom river was applied, where geographic informations related with national and local rivers are available.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.4_1
/
pp.311-318
/
2014
The data of buildings and structures take over large portions of the mapping database with large numbers. Furthermore, those shapes and attributes of building data continuously change over time. Due to those factors, the efficient methodology of updating database for following the most recent data become necessarily. This study has purposed on extracting needed data, which has been changed, by using overlaying analysis of new and old dataset, during updating processes. Following to procedures, we firstly searched for matching pairs of objects from each dataset, and defined the classification algorithm for building updating cases by comparing; those of shape updating cases are divided into 8 cases, while those of attribute updating cases are divided into 4 cases. Also, two updated dataset are set to be automatically saved. For the study, we selected few guidelines; the layer of digital topographic map 1:5000 for the targeted updating data, the building layer of Korea Address Information System map for the reference data, as well as build-up areas in Gwanak-gu, Seoul for the test area. The result of study updated 82.1% in shape and 34.5% in attribute building objects among all.
KIPS Transactions on Software and Data Engineering
/
v.6
no.7
/
pp.337-352
/
2017
Clone-and-own reuse is an approach to creating new software variants by copying and modifying existing software products. A family of legacy software products developed by clone-and-own reuse often requires high maintenance cost and tends to be error-prone due to patch-ups without refactoring and structural degradation. To overcome these problems, many organizations that have used clone-and-own reuse now want to migrate their legacy products to software product line (SPL) for more systematic reuse and management of software asset. However, with most of existing methods, variation points are embedded directly into design and code rather than modeled and managed separately; variation points are not created ("engineered") systematically based on a variability model. This approach causes the following problems: it is difficult to understand the relationships between variation points, thus it is hard to maintain such code and the asset tends to become error-prone as it evolves. Also, when SPL evolves, design/code assets tend to be modified directly in an ad-hoc manner rather than engineered systematically with appropriate refactoring. To address these problems, we propose a feature-oriented method for extracting a SPL asset from a family of legacy applications. With the approach, we identify and model variation points and their relationships in a feature model separate from implementation, and then extract and manage a SPL asset from legacy applications based on the feature model. We have applied the method to a family of legacy Notepad++ products and demonstrated the feasibility of the method.
Recently, the necessity of new methods of spatial data integration and analysis in CRM has been increased since it is acknowledged that about eighty percent of all data stored in corporate databases has a spatial component. But conventional CRM systems are either incapable of managing spatial data or are not user-friendly when doing so. This paper has designed and implemented spatially-enabled integration management system that can manage consistently both enterprise and spatial data through a legacy CRM system and object-oriented database and additionally support spatial analysis and map visualization for a gCRM. Through implementation, it is demonstrated that the proposed system can facilitate effectively spatial data management and analysis in a legacy CRM system.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.5
/
pp.15-30
/
2023
Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.
O, Se-Ung;Park, Jong-Min;Lee, Mun-Jin;Kim, Hye-Jin
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2010.10a
/
pp.10-12
/
2010
환경 민감 지도는 해양 유출유 사고 시 효율적이고 신속한 방제 업무를 위한 유용한 정보이다. 그러나 해상교통 및 안전 분야 종사자는 전통적으로 해도 및 전자해도 사용에 익숙하여 현 환경민감지도의 색상 및 심볼의 낮은 친숙도가 지적된 바 있다. 본 연구에서는 전자해도의 제작 표준에 해당하는 수로데이터 표준모델에 따라 환경민감지도 데이터를 제작하고 전자해도 표현방법에 따라 표시 하였다. 세부 연구 내용으로 환경민감정보에 대한 객체와 속성, 표현 심볼 및 색상에 대해 정의하고, 기존 환경민감정보를 내부 전자해도 포맷으로 변환하였다. 다음으로 내부 전자해도 데이터를 전자해도 표현방법에 따라 전자해도 레이어에 중첩시켜 그 결과를 확인 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.