• Title/Summary/Keyword: 레벨셋 함수

Search Result 16, Processing Time 0.025 seconds

Morphing Technique using Scanned Data and Level-Set Method (스캔 데이터와 레벨셋 방법을 이용한 몰핑 기법)

  • Lee, Tae-Ho;Lee, Seung-Wook;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.565-568
    • /
    • 2011
  • NURBS는 매개변수를 이용하여 3차원에서 곡면을 표현한 방법으로서 노트벡터, 조정점, 가중치로 구성된다. 레벨셋은 공간을 음함수로 정의된 장으로 형성하여 음함수의 일정한 값을 추적하여 곡면을 표현한 방법이다. 본 논문에서는 스캔 데이터를 NURBS 형태로 추출한 뒤 이를 정밀한 레벨셋 모델로 변환하였다. 레벨셋 모델을 구성하기 위해서 형성된 음함수는 부호를 갖는 거리함수를 사용하였고, 거리함수를 정밀하게 나타내기 위해 Newton 순환법을 이용하였다. 변환된 레벨셋 모델을 이용하여 형상의 몰핑을 수행하였다. 몰핑은 초기 형상을 목표 형상으로 변화시켜 나가는 과정으로서 레벨셋 모델을 이용한 몰핑은 용이성과 질적인 측면에서 우수하다. 수치 예제에서는 스캔 데이터의 레벨셋 모델 변환과 변환된 형상이 자연스럽게 목표형상으로 변화하는지를 확인한다.

  • PDF

Image segmentation Using Hybrid Level Set (하이브리드 레벨 셋을 이용한 이미지 분할)

  • Joo Ki-See;Kim Eun-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1453-1463
    • /
    • 2004
  • The conventional image segmentation method using level set has been disadvantage since level set function in the gradient-based model evolves depending on the local profile of the edge. In this paper, a new model is introduced by hybridizing level set formulation and complementary smooth function in order to smooth the driving force. We consider an alternative way of getting the complementary function(CF) which is much easier to simulate and makes sense for most cases having no triple junctions. The rule of thumb is that CF must be computed such that the difference between their average and the original CF function should be able to introduce a reliable driving force for the evolution of the level set function. This proposed hybrid method tries to minimize drawbacks the conventional level set method.

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

Level Set Based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho;Hashimoto, Hiroshi;Abe, Kazuhisa
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.693-696
    • /
    • 2011
  • 본 논문에서는 레벨셋 방법을 이용하여, 소음을 차단하기 위한 음향 구조물의 형상 최적 설계를 수행하였다. 음향 결정 구조에서는 음향이 흩어져 있는 결정 구조에 의해서 굴절되기 때문에 결정 모양을 조정함으로써, 음향 거동을 제어 할 수 있다. 형상 최적 설계의 목적은 특정한 각도와 각속도로 입사되는 입사파에 대해서 음향 투과율(acoustic transmittance)이 최소가 되도록 음향 결정의 형상(inclusion shape)을 결정하는 것이다. 음향 압력(acoustic pressure)은 주기성을 갖는 음향 결정에 대해서 헬몰츠(Helmoltz)형태의 지배 방정식을 풀어서 얻을 수 있다. 본 연구에서는 음향 구조물로 결정이 수평 방향으로는 주기적으로 무한히 분포하고 수직방향으로는 유한한 층간 구조를 가지고 있는 소음 방어벽 (Noise barrier)을 고려한다. 결정의 위치는 고정되어 있고, 결정의 형상을 설계 변수로서 음파의 거동을 제어할 수 있도록 하였다. 주기적 구조물을 고려하기 때문에 결정의 좌와 우에 Bloch 이론을 적용해 주기적 경계조건을 부과하였고, 소음 방어벽 위와 아래에는 임피던스 행렬(impedance matrix)를 이용하여, 무한 균질 영역과 소음 방어벽사이의 음파 투과를 모사하였다. 복잡한 형상 변화를 표현하기 위해 임시적 경계를 이용한 레벨셋 방법을 사용하였다. 설계 민감도 해석을 통해 목적함수가 감소하는 방향으로 경계에서의 수직 벡터를 계산하고, 이를 헤밀턴-자코비(Hamilton-Jacob) 방정식에 대입하여, 최적의 형상을 나타내는 레벨셋 함수를 구하였다.

  • PDF

Particle-Based Extended Marching Cubes with Efficient Quadratic Error Function (효율적인 2차 오차 함수를 이용한 입자 기반 Extended Marching Cubes)

  • Yu-Bin Kwon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.387-390
    • /
    • 2024
  • 본 논문에서는 효율적인 2차 오차 함수를 이용하여 입자 기반에서 EMC(Extended Marching Cubes) 알고리즘을 구현할 수 있는 새로운 알고리즘을 제안한다. Smoothing 커널(Kernels)을 통해 계산한 입자 평균 위치에서 레벨셋(Level-set)을 계산해 스칼라장을 구축한다. 그리고 난 뒤 SPH(Smoothed particle hydrodynamics)기반의 커널을 통해 밀도, 입자 평균 위치를 계산한다. 스칼라장을 이용해 등가 곡면(Isosurface)을 찾고 음함수로 표현된 표면을 구성한다. SPH 커널을 공간에서 미분하면 공간상의 어느 위치에서나 기울기를 계산할 수 있고, 이를 통해 얻어진 법선벡터를 이용하여 일반적인 EMC나 DC(Dual contouring)에서 사용하는 2차 오차 함수를 효율적으로 설계한다. 결과적으로 제안하는 방법은 메쉬와 같이 연결정보다 없는 입자 기반 데이터에서도 EMC 알고리즘을 구현하여 볼륨(Volume) 손실을 줄이고, 복잡한 음함수 표면을 표현할 수 있게 한다.

  • PDF

Isogeometric Topological Shape Optimization of Structures using Heaviside Enrichment (헤비사이드 강화를 이용한 구조물의 아이소-지오메트릭 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • An isogeometric topological shape optimization method is developed using the level sets and Heaviside enrichments. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set functions, which facilitates to handle complicated topological shape changes. The Heaviside enrichment improves the isogeometric analysis by adding some enrichment functions to model the internal boundaries. The proposed topological shape optimization method has several benefits: exact geometric models can be obtained using the isogeometric approach and the limitation of tensor-product patches can be overcome using the Heaviside enrichments to represent the internal voids. Even in a single patch, discontinuous displacement fields as well as smooth stress field can be obtained. Since the level sets offer the implicit moving boundary inside the domain, it is easy to represent the topological shape variations in the isogeometric analysis using Heaviside enrichments.

Color image segmentation by level set method (레벨셋 기법을 이용한 컬러 이미지 분할)

  • Yoo, Ju-Han;Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, we propose a method to segment a color image into several meaningful regions. We suppose that the meaningful region has a set of colors with high frequency in the color image. To find these colors, the color image is represented as several sets of color points in RGB space. And when we use the density of points defined in this method, color belonging to a dense region of color points in RGB space refers to the color that appeared frequently in the image. Eventually, we can find meaningful regions by looking for regions with high density of color points using our level set function in RGB space. However, if a meaningful region does not have a contiguous region of the sufficient size in the image, this is not a meaningful region but meaningless region. Thus, the pixels in the meaningless region are assigned to the biggest meaningful region belonging to its neighboring pixels in the color image. Our method divides the color image into meaningful regions by applying the density of color points to level set function in RGB space. This is different from the existing level set method that is defined only in 2D image.

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives (위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.559-567
    • /
    • 2012
  • A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

Level Set Based Shape Optimization of Linear Structures using Topological Derivatives (위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Kim, Min-Geun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.