Proceedings of the Computational Structural Engineering Institute Conference
/
2011.04a
/
pp.565-568
/
2011
NURBS는 매개변수를 이용하여 3차원에서 곡면을 표현한 방법으로서 노트벡터, 조정점, 가중치로 구성된다. 레벨셋은 공간을 음함수로 정의된 장으로 형성하여 음함수의 일정한 값을 추적하여 곡면을 표현한 방법이다. 본 논문에서는 스캔 데이터를 NURBS 형태로 추출한 뒤 이를 정밀한 레벨셋 모델로 변환하였다. 레벨셋 모델을 구성하기 위해서 형성된 음함수는 부호를 갖는 거리함수를 사용하였고, 거리함수를 정밀하게 나타내기 위해 Newton 순환법을 이용하였다. 변환된 레벨셋 모델을 이용하여 형상의 몰핑을 수행하였다. 몰핑은 초기 형상을 목표 형상으로 변화시켜 나가는 과정으로서 레벨셋 모델을 이용한 몰핑은 용이성과 질적인 측면에서 우수하다. 수치 예제에서는 스캔 데이터의 레벨셋 모델 변환과 변환된 형상이 자연스럽게 목표형상으로 변화하는지를 확인한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.7
/
pp.1453-1463
/
2004
The conventional image segmentation method using level set has been disadvantage since level set function in the gradient-based model evolves depending on the local profile of the edge. In this paper, a new model is introduced by hybridizing level set formulation and complementary smooth function in order to smooth the driving force. We consider an alternative way of getting the complementary function(CF) which is much easier to simulate and makes sense for most cases having no triple junctions. The rule of thumb is that CF must be computed such that the difference between their average and the original CF function should be able to introduce a reliable driving force for the evolution of the level set function. This proposed hybrid method tries to minimize drawbacks the conventional level set method.
Journal of the Computational Structural Engineering Institute of Korea
/
v.21
no.3
/
pp.239-245
/
2008
A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.
Kim, Min-Geun;Cho, Seon-Ho;Hashimoto, Hiroshi;Abe, Kazuhisa
Proceedings of the Computational Structural Engineering Institute Conference
/
2011.04a
/
pp.693-696
/
2011
본 논문에서는 레벨셋 방법을 이용하여, 소음을 차단하기 위한 음향 구조물의 형상 최적 설계를 수행하였다. 음향 결정 구조에서는 음향이 흩어져 있는 결정 구조에 의해서 굴절되기 때문에 결정 모양을 조정함으로써, 음향 거동을 제어 할 수 있다. 형상 최적 설계의 목적은 특정한 각도와 각속도로 입사되는 입사파에 대해서 음향 투과율(acoustic transmittance)이 최소가 되도록 음향 결정의 형상(inclusion shape)을 결정하는 것이다. 음향 압력(acoustic pressure)은 주기성을 갖는 음향 결정에 대해서 헬몰츠(Helmoltz)형태의 지배 방정식을 풀어서 얻을 수 있다. 본 연구에서는 음향 구조물로 결정이 수평 방향으로는 주기적으로 무한히 분포하고 수직방향으로는 유한한 층간 구조를 가지고 있는 소음 방어벽 (Noise barrier)을 고려한다. 결정의 위치는 고정되어 있고, 결정의 형상을 설계 변수로서 음파의 거동을 제어할 수 있도록 하였다. 주기적 구조물을 고려하기 때문에 결정의 좌와 우에 Bloch 이론을 적용해 주기적 경계조건을 부과하였고, 소음 방어벽 위와 아래에는 임피던스 행렬(impedance matrix)를 이용하여, 무한 균질 영역과 소음 방어벽사이의 음파 투과를 모사하였다. 복잡한 형상 변화를 표현하기 위해 임시적 경계를 이용한 레벨셋 방법을 사용하였다. 설계 민감도 해석을 통해 목적함수가 감소하는 방향으로 경계에서의 수직 벡터를 계산하고, 이를 헤밀턴-자코비(Hamilton-Jacob) 방정식에 대입하여, 최적의 형상을 나타내는 레벨셋 함수를 구하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.387-390
/
2024
본 논문에서는 효율적인 2차 오차 함수를 이용하여 입자 기반에서 EMC(Extended Marching Cubes) 알고리즘을 구현할 수 있는 새로운 알고리즘을 제안한다. Smoothing 커널(Kernels)을 통해 계산한 입자 평균 위치에서 레벨셋(Level-set)을 계산해 스칼라장을 구축한다. 그리고 난 뒤 SPH(Smoothed particle hydrodynamics)기반의 커널을 통해 밀도, 입자 평균 위치를 계산한다. 스칼라장을 이용해 등가 곡면(Isosurface)을 찾고 음함수로 표현된 표면을 구성한다. SPH 커널을 공간에서 미분하면 공간상의 어느 위치에서나 기울기를 계산할 수 있고, 이를 통해 얻어진 법선벡터를 이용하여 일반적인 EMC나 DC(Dual contouring)에서 사용하는 2차 오차 함수를 효율적으로 설계한다. 결과적으로 제안하는 방법은 메쉬와 같이 연결정보다 없는 입자 기반 데이터에서도 EMC 알고리즘을 구현하여 볼륨(Volume) 손실을 줄이고, 복잡한 음함수 표면을 표현할 수 있게 한다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.26
no.1
/
pp.79-87
/
2013
An isogeometric topological shape optimization method is developed using the level sets and Heaviside enrichments. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set functions, which facilitates to handle complicated topological shape changes. The Heaviside enrichment improves the isogeometric analysis by adding some enrichment functions to model the internal boundaries. The proposed topological shape optimization method has several benefits: exact geometric models can be obtained using the isogeometric approach and the limitation of tensor-product patches can be overcome using the Heaviside enrichments to represent the internal voids. Even in a single patch, discontinuous displacement fields as well as smooth stress field can be obtained. Since the level sets offer the implicit moving boundary inside the domain, it is easy to represent the topological shape variations in the isogeometric analysis using Heaviside enrichments.
In this paper, we propose a method to segment a color image into several meaningful regions. We suppose that the meaningful region has a set of colors with high frequency in the color image. To find these colors, the color image is represented as several sets of color points in RGB space. And when we use the density of points defined in this method, color belonging to a dense region of color points in RGB space refers to the color that appeared frequently in the image. Eventually, we can find meaningful regions by looking for regions with high density of color points using our level set function in RGB space. However, if a meaningful region does not have a contiguous region of the sufficient size in the image, this is not a meaningful region but meaningless region. Thus, the pixels in the meaningless region are assigned to the biggest meaningful region belonging to its neighboring pixels in the color image. Our method divides the color image into meaningful regions by applying the density of color points to level set function in RGB space. This is different from the existing level set method that is defined only in 2D image.
Journal of the Computational Structural Engineering Institute of Korea
/
v.25
no.6
/
pp.559-567
/
2012
A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.
Journal of the Computational Structural Engineering Institute of Korea
/
v.27
no.1
/
pp.9-16
/
2014
Using a level set method and topological derivatives, a topological shape optimization method that is independent of an initial design is developed for linearly elastic structures. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. The "Hamilton-Jacobi(H-J)" equation and computationally robust numerical technique of "up-wind scheme" lead the initial implicit boundary to an optimal one according to the normal velocity field while minimizing the objective function of compliance and satisfying the constraint of allowable volume. Based on the asymptotic regularization concept, the topological derivative is considered as the limit of shape derivative as the radius of hole approaches to zero. The required velocity field to update the H-J equation is determined from the descent direction of Lagrangian derived from optimality conditions. It turns out that the initial holes are not required to get the optimal result since the developed method can create holes whenever and wherever necessary using indicators obtained from the topological derivatives. It is demonstrated that the proper choice of control parameters for nucleation is crucial for efficient optimization process.
Journal of the Computational Structural Engineering Institute of Korea
/
v.27
no.1
/
pp.1-8
/
2014
Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.