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ABSTRACT

The conventional image segmentation method using level set has been disadvantage since level set function
in the gradient-based model evolves depending on the local profile of the edge.

In this paper, a new model is introduced by hybridizing level set formulation and complementary smooth
function in order to smooth the driving force. We consider an alternative way of getting the complementary
function(CF) which is much easier to simulate and makes sense for most cases having no triple junctions. The
rule of thumb is that CF must be computed such that the difference between their average and the original
CF function should be able to introduce a reliable driving force for the evolution of the level set function.

This proposed hybrid method tries to minimize drawbacks the conventional level set method.

I/l

gradient-based model, complementary smooth function, hybridizing level set, driving force

i . Introduction o gradient-based method studied by Zhao at
al. [21], and
In this article, we develop efficient numerical * gradient-tree method of Chan and Vese

[3.4], which is developed from the
Mumford-Shah  functional in  image
processing [13]. They turn out to allow
researchers not only to introduce innovative

algorithms for the level set segmentation,
combining the following two level in following
two level set methods:

BEASHHD HLSEALET ~OIFH AT HEB Y
X 2004. 10. 29



FIHFRRENGI=TA A8A ATE

mathematical models but also to analyze
and improve traditional algorithms.

we consider preliminaries, beginning with
general remarks for segmentation. Then we visit
briefly the level set models, such as the
gradient-based model [21] (see also [1, 2, 10, 11])
and the Mumford-Shah functional in image
processing [3, 4, 13]. The next section presents a
hybrid method, combining there two methods,
which tries to minimize drawbacks from both
sides.

1.1 General remarks

For a given image u’, we denote the desired
contours of edges by I When a level set
function ¢ : 2 — RJ15] is incorporated with a
segmentation method, the contours of edges are
identified by the zero-level set, i.e.,

F={x:¢Kx =10

Changes in values of the level set function can
reform the contours of the desired edges. Such
mathematical techniques are called the methods
of acting contours or snakes. Effectiveness and
efficiency of the snake methods depend strongly
on a complementary function (CF) of u’, which
we define in this article as a function that
invokes the driving force for the level set
function ¢. The CF must be incorporated in such
a way that it is easy to compute and introduces
a reliable driving force for the change of the
level set function and therefore the zero-level set.

For instance, see Figure 1, where the solid
curve indicates the given image u’ and the
dashed curve is an initial guess for the level set
function ¢. The desired zero-level set consists of
two points that are denoted by bullets X, 7 =
1,2 and the current zero-level set is the points P,
i =1,2. Assume that a CF is computed such that
the corresponding driving force for the level set
function be negative near P, and positive near
P,. Then, it is clear to see that P, and P, are
getting closer to X; and X,, respectively. Thus it
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is very important to compute an effective
representation of u’ in order to invoke such a
reliable driving force for the level set function.

We will back to this issue later when we

consider acceleration techniques in §4.
1.2 Gradient-based segmentation
There are lots of classical contour models.

Among other, we consider the variational level
set formulation of Zhao etal. [21]:

- qul(gkﬁVg-—,%;’Z—r)

=1 vélgk, + vg- V¢

(1.1)

where k, =V - (V¢/| Vé| ), the mean

curvature. The edge detector g=g(Vu’) is
defined as, for some (> 0andp =1,

gvu )= 1

where J is a Gaussian of variance o

The driving force inherited in the
segmentation model (1.1) can be summarized as
follows:

¢ Motion with normal velocity, which is equal
to its curvature times the edge detector.
(This component of the force drives the
contour smoother)

e Convection in the direction that
gradient of the edge detector.

is the

Note that the edge detector gplays the role of
CF, which invokes a driving force for the level
set function. It has been numerically verified that
the choices of {, .J, and p in g often become a
crucial component in the performance of the
model (1.1).

1.3 Mumford-Shah segmentation
The Mumford-Shah minimization for segmen-
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tation [13] reads

min

Lo By () (13)
where Ey¢ (I''u) = 7« length(l') +
}\fglu—uolzdx‘*' ufg/FIVulzdx (1.4)

Here {2 denotes the domain for the image, 7,
A, and |4 are nonnegative constants, and u is a

CF that is locally smooth except near T'.

To present the level set formulation proposed
in [3,4], we first consider the Heaviside function
H (in the one-dimensional space) defined by

_ (1, i 120
H(E) = {o, it 1< 0

1

Define the CF y as

A X) = 1 HOOHG(X)) + 2 - (XA -Ho(Xy)  (1.5)

Where yt and ¢~ are two €' functions that

are to be updated during the simulation. Note
that the CF u can be identified by 3% and ¢,

ie.,

w0, if XeQ b = {(X16(30>0}

“(X’={u—<x>, if XeQ3: = {XI0(X) <0)

Then, the Mumford-Shah functional (1.4) can
be rewritten as (A=1)

Eyu*,u”,0)=n [ | VH®) | dx (1.6)
+ [ lat—u® ] PHO(X)dx
+ [ lum =l | 31— He(X0)dx

+u [ IVt | 2H@X0)@

+uf v 21— He(X0)dx

where we have utilized the following identity

length(r) = [ L | VH®) | &

It is not difficult to find the associated
Euler-Lagrange (EL) equations For 4, ©~, and
¢, by utilizing mathematical techniques in the
calculus of variations [18]; see also [3,4]. The EL

equation for ¢ is -%‘%=

GO [nv - [ )t =0+ =]

+o,()~p) vut 124p 1 v 1]

_—.6,(¢)[nv'(—1%)'2(“)""_)(“0_ u+;u— )] (17)
+8 [ —nlveti t+tulve1 Y

and the EL equations for ¢+ and ¢~ are

(@ ut—ul=usut, Xe0}

) u —u=pou-, XeQ;

(1.8)

where 7 denotes the unit normal and &, is an

approximation of the Dirac (the
derivative of an approximate Heaviside function
[3]) defined as

function

8 (8) =—r H.(Y) 1.9)
—d[Ll, 1., -1(3)-L1l__¢
—d§[2+ntan l(e)]— T ogl472

where ¢ is a positive parameter.

The level set equation (1.7) can be simulated
(as the time integration), with the solutions of
the elliptic equations (1.8) incorporated in each
time step. One can easily see that solving these
elliptic problems (when an appropriate boundary
condition is applied on {X| ¢(X)=0}) is the most
costly component of the simulation.

Note that the curvature term,
nv - (V¢/AVeé | ) in (1.7), makes the level set
function smoother as the parameter 77 grows. On

the other hand, the difference between the image
0

u’ and the average of u* and u™ is an
important component for the driving force for
the level set function ¢. Thus, the CF u (as a
combination of u* and u”) must be computed
such that it can invoke an appropriate and
reliable force for the evolution of the zero-level
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set to the desired edges.

In the context, the Mumford-Shah- Chan-Vese
(MSCV) model (1.7)-(1.8) shows two major
drawbacks on (a) how to apply boundary
condition for the elliptic differential equations
and (b) how to extend y* to Q;F . Chan and
Vese [3,4] suggested the no-flux boundary
condition; for methods for the extension of y¥,
see [CITES]. However, they work well for
essentially binary (or piecewise constant) images
but hardly make sense for segmenting general
images.

When ¢+ and ¢~ are assumed constants, i.e.
ut = ¢ and 4~ = C-, one does not have to
solve (1.8) explicitly and the EL equation (1.7)

can be simplified as —% = (1.10)

St ofe- 232

ivel

849)[n9 - {

where C* are averages of ¢ in 2f defined

as Ct=C*(¢)= u;H(tb(y))dyd (111)
= c(9)= L2 B0
[U]e]
e N
F%f// N
- ) Pa~ X2

Figure 1. A given image (solid curve) and an initial
quess for the level set function (dashed curve).

The segmentation algorithm utilizing the
locally constant CF, (1.10)-(1.11), works for
essentially binary images quite effectively. For
example, consider the image and the level set
function in Figure 1. It is apparent to see

i 0 - max
zen ¥ (x)<C <C*< Jos u%(x)

and therefore
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+ -
2(c*~ )t - -CECT)
<0, if X<X,

=( >0, if Xe(X, X,), (1.12)
0, if X>X,

Thus, the time integration with (1.10)~(1.11)
would result in the zero-level set {P,, P»} getting
closer to the desired edges {Xj, X}.

Ill. The Model

In this section, we present a hybrid model,
which combines the gradient-based model (1.1)
and the MSCV model (1.7)-(1.8). Then, an
efficient computational algorithm is considered
for the model.

2.1 New hybrid model

We first note that the curvature term in (1.7)
has the major role of the smoothing level set
function, which can be replaced by as reasonable
smoothing term. In the new model, we will
substitute the right side of (1.1) for it. It also
should be noticed that the terms involving
| vu® | have been introduced to make the CF
smoother; they may be dropped as long as the
CF is smooth enough.

Now, we explicitly define the hybrid model:
for some o, 8 = 0,

%‘%—alvmv-(g'—gﬁ)

= B8 (D[ (u —u)2—(u*—u")?]
where g is defined as in (1.2).

2.1)

Here one may select ¥ as the solution of the
elliptic equations (1.8). However, as mentioned
earlier, the solution of (1.8) shows some
drawbacks.

We note that the level set function in the
gradient-based model (1.1) evolves depending on
the local profile of the edge detector
g=g(Vu"). Thus on should guess well initial
values of the level set function. It is otherwise
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often the case that the model fails to detect the
desired boundaries. It is also known that the
model can hardly find interior boundaries or
contours that are very smooth or have
discontinuous boundaries [14, Ch.12]. Therefore,
we may consider the model (2.1) as a variant of
(1.1), with the forcing term in the right side
introduced in order to eliminate/minimize such
drawbacks.

On the other hand, the MSCV model (1.7)-(1.8)
shows a certain degree of global properties to
overcome some drawbacks of (1.1); however, the
computation of y* and their extension hardly
make sense unless the image is essentially
binary. The model is yet to be improved, e.g., by
incorporating some of gradient information. In
our new model, we suggest the replacement of
the simple smoothing term (curvature) by a
more reliable term that includes gradient
information. Here we still have to answer the
question: How to get u¥? See §4.2 below for an

alternative solution for y*.

2.2 Computational method for ¢

Now we present a time-stepping procedure for
(2.1): an incomplete backward Euler discretiza-
tion combined with the alternating direction
implicit (ADI) perturbation.

Let us assume that the values of ¢ at

t= tn—l’ ¢n——1’
initialized and that y* be updated. To obtain

have been computed or

@™, consider the following incomplete backward
Euler method for (2.1):

¢n_¢n—l— a1 . Vh/2¢"
At al V¢ | Vw2 g———l V}.¢"_1|

=B8(¢" D[(e —ul =(u*~u"? (22)

where h is the spatial grid size and V, and
Vs denote respectively the standard and
half-interval central difference schemes for the
gradient operator. Along the boundary §{2, one
can apply the no-flux boundary condition or
whatever appropriate.

Let Vv ,,=(D,,D,) % Define two linear

operators (tri-diagonal matrices) and the source
vector as

D nl
AP = —al V" D, . (QT#T} =12
K

Froti=86 (6" D a —a)P~(u*-2"? (23)
Then, (2.2) can be rewritten as

n__ag n—1
28 (AT AN T =F T (24)

The associated ADI method, studied by
Douglas and Rachford [8], is as follows:

(1+atAT N * =0 " 1—aAy o " '+ arF"],
(1+2tA Yo "=0*+atAy lp"! (2.5

which we call the Euler-ADI in this article. It
is easy to see that the Euler-ADI is an O(a#)
perturbation of (34). In each half of the
calculation, the matrix to be inverted is
tridiagonal, so that the algorithm requires
O(N=nmn.n,) flops, where n  (p=x,y, 0r #) is
the number of points in the p-direction. The ADI

method was first introduced in three papers [5,
7, 16] by Douglas, Peace-man, and Rachford. The
original ADI method is an O(a#?) perturbation
of the Crank-Nicolson difference equation
solving the heat equation in 2D. The extra error
appearing in the operator splitting is called the
splitting error. As variants, Dyakonov, Marchuk,
and Yanenko [9, 12, 19, 20] studied the fractional
step (FS) method and Weickert and his
colleagues [17] introduced the additive operator
splitting (AOS) method. Recently, Douglas and
KIM [6] analyzed a unified approach for the ADI
and FS methods in which both methods are
second-order accurate and their splitting errors
are in third-order in time when applied for
linear parabolic problems.

ll. The Method of Background Subtraction

We consider a cartoon image which shows a
rectangle on an oscillatory back-ground. When
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the MSCV method is applied for the image, it
easily produces extra boundaries. Such extra
boundaries have been observed from various
experiments; the method assumes some smooth
portions as parts of boundaries. It seems to us
that the phenomenon is not independent from
the claim in [3,4]: the method can detect smooth
boundaries. However, the ability mentioned in
the claim is not always advantageous for the
segmentation of general images. In order for the
method to become effective for images of general
backgrounds, we will consider the method of
background subtraction.

Let the image be decomposed as

u'=u+8u,

3.1

where u is a
background) of the image.

To illustrate the method of background
subtraction, we will see Figure 2. There, the
background and the projection (fu) are

smooth component(the

depicted for a cartoon image u%. As one can see

from the figure, there seems to be a high
probability that the segmentation algorithm can
detect the boundaries for du more effectively

rather than for 0 itself, provided that the

background is smooth enough not to distract the
edges. Here the problem is how to choose such a
background.

There must be many ways for choices of the
background. In this section, we suggest an
effective strategy, which has been motivated
from the multigrid (multi-resolution) method that
is quite popular in scientific computing:

1. Select a coarse mesh {£2;} for the image
domain 2. Each element {2,; in the coarse
mesh contains m, x m, pixels of the image,
for some m,, m,> 1.

RN
T :/m

Figure 2. The method of background subtraction.
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2. Choose a coarse image U, on {{2;}:
uc_,-,-= (d ”+m”)/2

where u, ;. denotes the value of u, on

c, 1
£2;; and q;; = the arithmetic average on §2;

m;; = the minimum on §2;;

3. Smooth u,, with u,*”
For example, apply a few iterations of the
modified five-point averaging described in (4.2)
(the negative part) below.
4. Prolongate U, to the original mesh £, for Uy

< ugld pointwisely.

One may apply the bilinear interpolation
for the prolongation.

5. Smooth the prolongated image U. Apply a
few iterations of a standard local averaging
algorithm,

6. Assign the result for u.

In the above algorithm for the computation of
u, one should determine parameters: the element
size of the coarse mesh (m,andm,)and the
iteration numbers for the smoothing algorithms
of Y. and %. The automatic determination of
such parameters is an interesting research task. It
is apparent that the number of smoothing
iterations depends on the element size of the
coarse mesh. In this paper, we will select them
experimentally; strategies for the automatic
determination will appear separately along with
various methods for the choice of the coarse

image U,.

IV. Acceleration Techniques

Efficiency can be a crucial factor for some
applications. To improve the convergence speed
for the detection of boundaries, one may
consider strategies:

® an accurate initial guess for ¢,
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% and

* a better solution for
ean appropriate manipulation of ¢ during

the iteration.

In the following, we present the strategies in
detail.

4.1 Initial guess for ¢

We may begin with a binary image «’, ie., v’
contains two different values, say, 0 and 1. In
the case, one can select the initial value of ¢, ¢0,
as follows:

o= uo__; 0 (4.1)

where u? is the £2 average of y°.

Note that for simple binary images, the above
initial value ¢ is already able to locate the

edges quite accurately.
For more general images, we would better
apply the method of background subtraction and

get 6u = u® — u. Then, we can initialize ¢ as in
4.1),
convergence of the Euler-ADI iteration (2.5).

replacing u° by du, for a faster

Figure 3. The original image 4° and smooth images
for

4.2 An alternative solution for fu,i

In this subsection, we will consider an
alternative way of getting the CF which is much
easier to simulate and makes sense for most
cases having no triple junctions. Here the rule of
thumb is that 4y must be computed such that
the difference between their average and the
image 4 should be able to introduce a reliable

driving force for the evolution of the level set
function.
See first Figure 3, where the original image °

+

and smooth images for y* are depicted. Such

u¥ can be obtained utilizing one of various

smoothing algorithms.
For example, one can apply a few iterations of
modified five-point averaging:

+,k+1/2 ( +,k
u;; =y,
Bkt
ij -

£k .k +,k
Uittt +ui,j+1)/4

J

u max (+u%;, %419 4.2
Note that -max (-a, -b) = min(a, b)

As one can see roughly from Figure 3,

o0 uttu”
quantity #° — 2 crosses zero near the

desired edges and therefore it provides a driving
force such that the level set function grows
positively on one side of the edge and negatively
on the other side. The above strategy can be
suited well for many cases e.g., the detection of
isolated objects, whether the edges are clear or
not.

4.3 Modification of the level set function
For a quick response of ¢ to the driving force,
it is natural to restrict the values of ¢ to be near

zero, by imposing upper and lower limits. For

example, when ¢ . > 0 denotes the desired

maximum value, the adjusted level set function
can be defined as

=0 - % tan ~1(¢ ;) (43)
Note that the right side is a smooth,

symmetric, and increasing function, having the
values in (_ ¢mux: ¢max )

V. Numerical Experiments

For numerical experiment, we choose gray
scale images in public domain. In figure 3, we
present the numerical results carried out utilizing
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of

the gray scale house image in 256x256 cells. The
original image, in figure 3(a), is segmented by
MSCV model, as shown in figure 3(b). The
original image is segmented by the proposed
hybrid level set model in this paper, as shown in
figure 3(c). As you see in figure, when the
gradient ~method is implemented  with

appropriate hybrid level

set model, it work better than the conventional
method. On the other hand, the segmented result
in figure 4 also confirms that the new hybrid
level method in this paper works better than the
conventional MSCV method.

Figure 3 Gray scale house images in 256X256 cells:
(a) the original image, (b) the segment result using
MSCV model, () the segment result by new proposed
hybrid level set mode!
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Figure 4. Gray scale Lenna images in 256X256 cells:
(a) the original image, (b} the segment result using
MSCV model, {(c) the segment result by new proposed
hybrid level set model

Figure 5 shows the internal organs for human
body. For experiment, the corpse is cool down in
a refrigerating machine.

The refrigerated dead body is amputated at
regular 3mm intervals by CNC Machine. The
figure 5 shows a breast slice among the
amputated slices. As one can see from top figure
5(a), the viscera below the lungs has complicated
features, also has the triple junction.
Furthermore, the gray level between viscera
varies smooth. We call the phenomena to
smoothing interface. As you see in figure 5(b),
the conventional MSCV model misses most of
these smoothing interfaces. However, the new
proposed hybrid level set method segments most
of smoothing interface except several case.

In last example shows that the hybrid level set
segmentation algorithm can introduce non
physical results, as other method so. Such non
physical results have observed, showing various
non physical segmentation, for about 5% of the
given image. To overcome such difficulties, we
may have to one or all of the following:

-3D simulation: The missing portions of
boundaries seem to be random. That is, a
slice has little relation to adjacent ones for
missing parts of boundaries. Thus it is
natural to except from the observation that
missing portions can be less sensitive in the
3D simulation than in 2D.

- Preprocessing: We may apply a set of
preprocessing, in particular, noise removal
and  histogram  transformation.  These
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techniques may alter the cartoon images.

VIl. Conclusions

We have considered efficient and reliable
numerical methods for PDE-based segmentation
applied to house, lena, and CT scan images.

The article begins with preliminaries for the
Mumford-Shah  minimization  problem in
segmentation and level set formulation by
Chan-Vese.

A backward Euler ADI procedure has been
introduced for an efficient integration of
Euler-Lagrange equations.

Futhermore, a new model is introduced by
hybridizing  level set formulation and
complementary smooth function in order to
smooth the driving force. The role of thumb is
that CF must be computed such that the
difference between their average and the original
CF should be able to introduce a reliable driving
force for the evolution of the level set function.

Also, to enhance the convergence speed, we
have suggested two of new speed-up techniques:
image dependent initialization and the
imposition of an upper bound for level set
function.

Numerical experiments has shown our hybrid
algorithm can locate the zero-level
set(segmentation) efficiently and reliably.

However, our algorithm also have shown
drawbacks as other methods, when triple
junction occurs. To overcome this drawback, we
may have to introduce 3D simulation, and some

of preprocessing u¥ so that the level set

function can locate the zero level set at different
locations.

(@]
Figure 5 Gray scale internal organ images in 256x256
cells: (@) the original image, (b) the segmented resuit
using MSCV model, (c) the segmented result by new
proposed hybrid leve! set model
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