• Title/Summary/Keyword: 레귤레이션 특성

Search Result 16, Processing Time 0.021 seconds

Low Drop Out Regulator with Ripple Cancelation Circuit (잡음 제거 회로를 이용한 LDO 레귤레이터)

  • Kim, Chae-Won;Kwon, Min-Ju;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.264-267
    • /
    • 2017
  • In this paper, A low dropout (LDO) regulator that improves the power supply rejection ratio by using a noise canceling circuit is proposed. The noise rejection circuit between the error amplifier and the pass transistor is designed to reduce the influence of the pass transistor on the noise coming from the voltage source. The LDO regulator has the same regulation characteristics as the conventional LDO regulator. The proposed circuit uses 0.18um process and Cadence's Virtuoso and Specter simulator.

Design and Analysis of 700W LDC with High Step-Down Ratio for High Efficiency Refrigeration Unit Based on Battery (배터리 기반 고효율 냉동유닛용 고강압 700W급 LDC 컨버터 토폴로지 설계 및 분석)

  • Ahn, Hyo-Min;Sung, Won-Yong;Ryu, Seung-Hee;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.419-420
    • /
    • 2014
  • 본 논문에서는 넓은 입력 범위와 높은 강압비를 갖는 700W급 DC-DC 컨버터의 구조에 대해 분석한다. 높은 강압비를 위해 2-stage로 구성되는 시스템에 강압을 위한 Buck 컨버터와 Bus 컨버터로 동작하는 Half-bridge LLC 공진형 컨버터 직렬 구성 방법에 따라 달리 설계된 각각의 컨버터에서 발생하는 손실과 출력전압 레귤레이션 특성에 대해 시뮬레이션 툴과 수학적 분석을 통해 분석하였다.

  • PDF

A High Quality Power Factor Correction Converter Based on Half Bride Topology (Half bridge 회로를 기반으로 한 역률개선용 컨버터)

  • 이준영;문건우;정영석;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.26-36
    • /
    • 1997
  • An single stage AC/DC converter based on half bridge topology suitable for low power level applications is proposed. The proposed converter has high power factor, low harmonic distortion, and tight output regulations. Asymmetrical control and synchronous rectification are adopted to reduce the switching loss and rectification loss, respectively. The modelling employing average modelling method and detailed analysis are performed to derive the design equations. According to these design equations, a prototype converter has been designed and experimented. This prototype meets the IEC 555-2 regulations with near unity power factor and high efficiency.

  • PDF

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis (유한요소해석을 통한 자동차용 글라스의 승강성능 예측)

  • Moon, Hyung-Il;Kim, Heon-Young;Choi, Cheon;Lee, In-Heok;Kim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1749-1755
    • /
    • 2010
  • The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

Design of a On-chip LDO regulator with enhanced transient response characteristics by parallel error amplifiers (병렬 오차 증폭기 구조를 이용하여 과도응답특성을 개선한 On-chip LDO 레귤레이터 설계)

  • Son, Hyun-Sik;Lee, Min-Ji;Kim, Nam Tae;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6247-6253
    • /
    • 2015
  • This paper presents the transient-response improved LDO regulator based on parallel error amplifiers. The proposed LDO regulator consists of an error amplifier (E/A1) which has a high gain and narrow bandwidth and a second amplifier (E/A2) which has low gain and wide bandwidth. These amplifiers are in parallel structure. Also, to improve the transient-response properties and slew-rate, some circuit block is added. Using pole-splitting technique, an external capacitor is reduced in a small on-chip size which is suitable for mobile devices. The proposed LDO has been designed and simulated using a Megna/Hynix $0.18{\mu}m$ CMOS parameters. Chip layout size is $500{\mu}m{\times}150{\mu}m$. Simulation results show 2.5 V output voltage and 100 mA load current in an input condition of 2.7 V ~ 3.3 V. Regulation Characteristic presents voltage variation of 26.1 mV and settling time of 510 ns from 100mA to 0 mA. Also, the proposed circuit has been shown voltage variation of 42.8 mV and settling time of 408 ns from 0 mA to 100 mA.

Design of Power IC Driver for AMOLED (AMOLED 용 Power IC Driver 설계)

  • Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.587-592
    • /
    • 2018
  • Because the brightness of an AMOLED is determined by the flowing current, each pixel of AMOLED operates via A current driving method. Therefore, it is necessary to supply power to adjust the amount of current according to THE user's requirement for AMOLED driving. In this study, an IP driver block was designed and a simulation was conducted for an AMOLED display, which supplies power as selected by users. The IP driver design focused on regulating the output power due to the OLED characteristics for the diode electric current according to the voltage to be activated by pulse-skipping mode (PSM) under low loads, and 1.5 MHz pulse-width modulation (PWM) for medium/high loads. The IP driver was designed to eliminate the ringing effects appearing from the dis-continue mode (DCM) of the step-up converter. The ringing effects destroy the power switch within the IC, or increase the EMI to the surrounding elements. The IP driver design minimized this through a ringing killer circuit. Mobile applications were considered to enable true shut-down capability by designing the standby current to fall below $1{\mu}A$ to disable it. The driver proposed in this paper can be applied effectively to the same system as the AMOLED display dual power management circuit.