• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.021 seconds

Development of Personal Mobility Safety Assistants using Object Detection based on Deep Learning (딥러닝 기반 객체 인식을 활용한 퍼스널 모빌리티 안전 보조 시스템 개발)

  • Kwak, Hyeon-Seo;Kim, Min-Young;Jeon, Ji-Yong;Jeong, Eun-Hye;Kim, Ju-Yeop;Hyeon, So-Dam;Jeong, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.486-489
    • /
    • 2021
  • Recently, the demand for the use of personal mobility vehicles, such as an electric kickboard, is increasing explosively because of its high portability and usability. However, the number of traffic accidents caused by personal mobility vehicles has also increased rapidly in recent years. To address the issues regarding the driver's safety, we propose a novel approach that can monitor context information around personal mobility vehicles using deep learning-based object detection and smartphone captured videos. In the proposed framework, a smartphone is attached to a personal mobility device and a front or rear view is recorded to detect an approaching object that may affect the driver's safety. Through the detection results using YOLOv5 model, we report the preliminary results and validated the feasibility of the proposed approach.

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

Development of a Steel Plate Surface Defect Detection System Based on Small Data Deep Learning (소량 데이터 딥러닝 기반 강판 표면 결함 검출 시스템 개발)

  • Gaybulayev, Abdulaziz;Lee, Na-Hyeon;Lee, Ki-Hwan;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.129-138
    • /
    • 2022
  • Collecting and labeling sufficient training data, which is essential to deep learning-based visual inspection, is difficult for manufacturers to perform because it is very expensive. This paper presents a steel plate surface defect detection system with industrial-grade detection performance by training a small amount of steel plate surface images consisting of labeled and non-labeled data. To overcome the problem of lack of training data, we propose two data augmentation techniques: program-based augmentation, which generates defect images in a geometric way, and generative model-based augmentation, which learns the distribution of labeled data. We also propose a 4-step semi-supervised learning using pseudo labels and consistency training with fixed-size augmentation in order to utilize unlabeled data for training. The proposed technique obtained about 99% defect detection performance for four defect types by using 100 real images including labeled and unlabeled data.

A study on the detection of pedestrians in crosswalks using multi-spectrum (다중스펙트럼을 이용한 횡단보도 보행자 검지에 관한 연구)

  • kim, Junghun;Choi, Doo-Hyun;Lee, JongSun;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • The use of multi-spectral cameras is essential for day and night pedestrian detection. In this paper, a color camera and a thermal imaging infrared camera were used to detect pedestrians near a crosswalk for 24 hours at an intersection with a high risk of traffic accidents. For pedestrian detection, the YOLOv5 object detector was used, and the detection performance was improved by using color images and thermal images at the same time. The proposed system showed a high performance of 0.940 mAP in the day/night multi-spectral (color and thermal image) pedestrian dataset obtained from the actual crosswalk site.

News Recommendation Exploiting Document Summarization based on Deep Learning (딥러닝 기반의 문서요약기법을 활용한 뉴스 추천)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.23-28
    • /
    • 2022
  • Recently smart device(such as smart phone and tablet PC) become a role as an information gateway, using of the web news by multiple users from the web portal has been more important things. However, the quantity of creating web news on the web makes hard to catch the information which the user wants and confuse the users cause of the similar and repeated contents. In this paper, we propose the news recommend system using the document summarization based on KoBART which gives the selected news to users from the candidate news on the news portal. As a result, our proposed system shows higher performance and recommending the news efficiently by pre-training and fine-tuning the KoBART using collected news data.

Deep Learning based Distress Awareness System for Small Boat (딥러닝 기반 소형선박 승선자 조난 인지 시스템)

  • Chon, Haemyung;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos (드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템)

  • Janghoon Lee;Yoonho Hwang;Heejeong Kwon;Ji-Won Choi;Jong Taek Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility (하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템)

  • Seung-Jae Ham;Min-Su Kang;Seong-Woo Jeong;Joonhyuk Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.

Deep Learning based Adaptive Video Streaming with Mobile Data Usage (모바일 데이터 사용량을 고려한 딥러닝 기반 적응형 비디오 스트리밍)

  • Kim, Minseob;Hur, Sungjae;Lee, Heejong;Vu, Van Son;Choi, Minje;Lim, Kyungshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.225-228
    • /
    • 2021
  • 최근 모바일 비디오 스트리밍 서비스의 이용자 수가 증가하고 있다. 이에 따라 모바일 환경에 적합한 DASH 비디오 스트리밍 메커니즘이 연구되었고, 이것을 DQN 기법에 의해 개선한 알고리즘은 모바일 네트워크 환경에서 적절한 비디오 품질 선택을 통해 버퍼링을 크게 줄일 수 있었다. 그러나 이는 모바일 요금제로 비디오 스트리밍 서비스를 이용하는 사용자들에게 안정적인 서비스를 제공하기 어렵다. 이에 본 논문은 기존의 DQN 기법에 의한 알고리즘을 발전시켜 사용자의 모바일 요금제에 적합한 비디오 품질을 선택하는 알고리즘을 연구하고 성능 실험 결과를 분석한다. 또한 이 알고리즘을 전체 모바일 비디오 스트리밍 시스템과 통합하여 이용하도록 제안한다.

  • PDF

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF