• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.03 seconds

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

Deep Learning-Based Model for Classification of Medical Record Types in EEG Report (EEG Report의 의무기록 유형 분류를 위한 딥러닝 기반 모델)

  • Oh, Kyoungsu;Kang, Min;Kang, Seok-hwan;Lee, Young-ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2022
  • As more and more research and companies use health care data, efforts are being made to vitalize health care data worldwide. However, the system and format used by each institution is different. Therefore, this research established a basic model to classify text data onto multiple institutions according to the type of the future by establishing a basic model to classify the types of medical records of the EEG Report. For EEG Report classification, four deep learning-based algorithms were compared. As a result of the experiment, the ANN model trained by vectorizing with One-Hot Encoding showed the highest performance with an accuracy of 71%.

Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network (순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측)

  • Jinho, Kim;Donghyeok, An
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, the demand and traffic volume for various multimedia contents are rapidly increasing through real-time streaming platforms. In this paper, we predict real-time streaming traffic to improve the quality of service (QoS). Statistical models have been used to predict network traffic. However, since real-time streaming traffic changes dynamically, we used recurrent neural network-based deep learning models rather than a statistical model. Therefore, after the collection and preprocessing for real-time streaming data, we exploit vanilla RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU models to predict real-time streaming traffic. In evaluation, the training time and accuracy of each model are measured and compared.

Robust Detection Deep Learning Model in the Various Exterior Wall Cracks (다양한 외벽 균열에 강인한 딥러닝 검출 모델 개발)

  • Kim, Gyeong-Yeong;Lee, Ho-Ryeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.53-56
    • /
    • 2021
  • 국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.

  • PDF

Comparison of hydrologic models and deep learning techniques for rainfall-runoff analysis (강우유출 분석을 위한 수문 모형과 딥러닝 기법의 비교 분석)

  • Kim, Jin Hyuck;Kim, Cho-Rong;Kim, Chung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.295-295
    • /
    • 2021
  • 수자원 관리 및 계획 수립에 있어 강우 유출 분석은 가장 중요하며, 기본적인 분석이다. 기존의 강우 유출 분석은 일반적으로 수문 모형을 이용한다. 강우 유출 분석은 강수와 증발산 과정, 즉 물순환에 있어 복잡한 상호 작용을 고려해야한다. 본 연구에서는 기존의 수문 모형과 데이터간의 관계를 포착할 수 있는 딥러닝 기법을 이용한 강우 유출분석 수행하였다. 우리나라의 유역 중, 비교적 풍부한 수문데이터를 보유하고 있는 IHP (International Hydrological Program)의 청미천 유역을 연구대상지역으로 연구를 수행하였다. 수문 모형으로는 SWAT (Soil and Water Assessment Tool)을 이용하였으며, 딥러닝 기법은 시계열 분석에 있어 주로 사용되는 RNN(Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크를 이용하였다. 분석결과 수문 모형의 성능 지표인 상관계수와 NSE (Nash-Sutcliffe Efficiency)는 LSTM 네트워크에서 더 높은 성능을 확인 할 수 있었다. 일반적으로 LSTM 네트워크는 보정 기간이 길수록 더욱 좋은 성능을 나타낸다. 즉, 과거 수문데이터가 충분히 확보된 유역에서 LSTM 네트워크와 같은 데이터 기반 모델은 다양한 지형 및 기상데이터를 필요하는 수문 모델보다 유용할 것이라 사료된다.

  • PDF

An Automatic Parking Space Identification System using Deep Learning Techniques (딥러닝 기법을 이용한 주차 공간 자동 식별 시스템)

  • Seo, Min-Gyung;Ohm, Seong-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.635-640
    • /
    • 2021
  • In this paper, we describe a parking space identification system that can automatically identify empty parking lot spaces from a parking lot photo. This system is based on a deep learning technique, and the accuracy of the identification result is good by learning various existing parking lot images. It could be applied to the existing parking management system. This system was also developed as a smartphone application for easy testing. Therefore, if you take a picture of a parking lot through a smartphone camera, the captured image is automatically recognized and an empty parking space can be automatically identified.

A Topic Related Word Extraction Method Using Deep Learning Based News Analysis (딥러닝 기반의 뉴스 분석을 활용한 주제별 최신 연관단어 추출 기법)

  • Kim, Sung-Jin;Kim, Gun-Woo;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.873-876
    • /
    • 2017
  • 최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.

Rear-Approaching Vehicle Detection Research using Region of Interesting based on Faster R-CNN (Faster R-CNN 기반의 관심영역 유사도를 이용한 후방 접근차량 검출 연구)

  • Lee, Yeung-Hak;Kim, Joong-Soo;Shim, Jae-Chnag
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a new algorithm to detect rear-approaching vehicle using the frame similarity of ROI(Region of Interest) based on deep learning algorithm for use in agricultural machinery systems. Since the vehicle detection system for agricultural machinery needs to detect only a vehicle approaching from the rear. we use Faster R-CNN model that shows excellent accuracy rate in deep learning for vehicle detection. And we proposed an algorithm that uses the frame similarity for ROI using constrained conditions. Experimental results show that the proposed method has a detection rate of 99.9% and reduced the false positive values.

Impulsive Noise Mitigation Scheme Based on Deep Learning (딥 러닝 기반의 임펄스 잡음 완화 기법)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.138-149
    • /
    • 2018
  • In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.