• Title/Summary/Keyword: 디지털 방사선영상

Search Result 347, Processing Time 0.022 seconds

Study on the Image Quality Comparison between in Digital RT and Film RT (용접부에 대한 디지털 방사선투과영상과 필름 방사선투과영상의 상질 비교에 관한 연구)

  • Park, Sang-Ki;Ahn, Yean-Shik;Gil, Doo-Song
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Conventional film radiographic test has been generally and widely used in the inspection on the weldment for quality assurance. On the other hand, since the analog RT is well known for typical time and cost consuming method with complex process of inspection, the industry has researched various ways how to improve radiographic test technology. In this study, we verified the fact that digital RT provides a lot more benefit in effectively detecting defects, ever film details, through digital processing of image enhancement, compared to film RT. As a result, we reached conclusion that digital RT is positively able to replace the film RT in industry in part or in whole.

Comparison Research of SNR and SRb with Bright Calibration and Multi Frame Images in Digital Radiography of Welded Test Components (용접 시험편의 디지털 방사선 검사에서 밝기 교정과 중첩 영상에 따른 SNR 및 SRb 비교 연구)

  • Nam, Mun-Ho;Yang, Jin-Wook;Cho, Kap-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.731-739
    • /
    • 2021
  • This work compared the bright calibration of digital radiation with signal-to-noise ratio and basic spatial resolution according to multi frame to enable effective inspection of welding parts of structures at industrial sites. A total of 130 images were obtained by using a 75Se radiation source for flat weld test pieces and segmenting bright calibration and multi frame prior to shooting. The study confirms that the signal-to-noise ratio improves as the number of bright calibrations and the number of multi frame increases. The basic spatial resolution satisfied the baseline for both radiographic images. It was confirmed that the number of signal-to-noise ratio was similar by comparing images taken after installing lead shielding for scattering radiation. Although signal-to-noise ratio increases as multi frame increases, it is believed that good quality digital radiographs can be obtained if appropriate radiographic techniques are devised because exposure time of radiation affects workers' exposure and work efficiency.

Bone loss Detection in Dental Digital X-ray Image by Structure Analysis (구조적 분석을 이용한 치과용 디지털 X-ray 영상에서의 골조직 변화 검출에 관한 연구)

  • Ahn, Yong-Hak;Chae, Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.275-280
    • /
    • 2004
  • In this paper, we propose automatic subtraction radiography algorithms to overcome conventional subtraction radiography's defects by applying image processing technique. In order to reach these goals, this paper suggests the image alignment method that is necessary for getting subtraction image and ROI(Region Of Interest) focused on a selection method using the structure characteristics in target images. Therefore, we use these methods because they give accurary, consistency and objective information or data to results. According to the results, easily and visually we can identify fine difference int the affected parts wether they have problems or not.

Quantitative Analysis of Spatial Resolution for the Influence of the Focus Size and Digital Image Post-Processing on the Computed Radiography (CR(Computed Radiography)에서 초점 크기와 디지털영상후처리에 따른 공간분해능의 정량적 분석)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of the present study was to carry out quantitative analysis of spatial resolution for the influence of the focus size and digital image post-processing on the Computed Radiography (CR). The modulation transfer functions of an edge measuring method (MTF) was used for the evaluation of the spatial resolution. The focus size of X-ray tube was used the small focus (0.6 mm) and the large focus (1.2 mm). We evaluated the 50% and 10% of MTF for the enhancement of edge and contrast by using multi-scale image contrast amplification (MUSICA) in digital image post-processing. As a results, the edge enhancement than the contrast enhancement were significantly higher the spatial resolution of MTF 50% in all focus. Also the spatial resolution of the obtained images in a large focus were improved by digital image processing. In conclusion, the results of this study should serve as a basic data for obtain the high resolution clinical images, such as skeletal and chest images on the CR.

Development of Image Quality Evaluation Program for Digital Diagnostic Radiography (디지털진단의료영상 화질평가 프로그램 개발)

  • Kang, Bo-Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.5-10
    • /
    • 2008
  • Most of the diagnostic medical radiography are rapidly replaced by digital imaging systems recently. Although with the current transition of analog to digital most of the exposure conditions and parameters are still on the basis of film-screen analog system. Moreover the evaluation of acquired digital radiographic image is not fulfilled normally because of the difficulties in handling the digital raw data. The user friendly windows program for the evaluations of digital radiographic image was developed on the MatLab platform. The program has functions for the calculation of the contrast profile, NPS(noise power spectrum), MTF(modulation transfer function), and NEQ(noise equivalent quanta).

  • PDF

The Legal Protection of Digital Medical Imaging in U-healthcare (U-헬스케어에 있어서 디지털 의료영상정보의 법률적 보호)

  • Jeong, Young-Yeub
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • 원격진료 홈네트워크 아파트 진료용 키오스크 모바일주치의 등으로 대표되는 U-헬스케어에 있어서 기초가 되는 것은 의료정보를 디지털화해서 전자적 자료의 형태로 저장 보관하고 이를 송 수신할 수 있는 기술이라고 할 수 있다. 우리나라의 경우, U-Korea 전략의 하나로 보건복지부가 주축이 되어 2005년 10월 현재 국가보건의료정보화계획(ISP)을 수립하기 위한 작업을 추진중에 있다. 여기서, 예컨대 임상병리검사소견이나 방사선촬영소견 등의 의료정보가 전자적 장치에 의해 디지털화 할 경우 디지털 의료정보가 되는 것이며, 이 가운데 특히 방사선촬영소견 등 방사선분야의 모든 촬영기록이 PACS시스템을 통해 기재되거나 저장 전송될 경우 이를 디지털 의료영상정보라고 할 수 있다. 그런데 오늘날 정보통신기술의 발달로 말미암아 디지털 의료영상정보를 포함한 디지털의료정보는 대량적으로 수집 저장되고 유통 내지 공동활용이 보편화되어 감에 따라 그 의료정보의 보호에 관한 문제가 중요한 이슈로 대두되고 있다. 결론적으로 말하자면, 이러한 디지털 의료영상정보가 전자의무기록(EMR) 형태로 저장 보관되는 경우 이는 전자의무기록에 관한 법률규정이 적용되어 법률적 보호를 받게 되며, 그 보호의 강도는 종래 오프라인 상의 의료정보 보호보다 한층 강화된 규정을 두고 있다. 이와 같은 흐름에 있어서 최근 정부가 국가보건의료정보화계획 수립과 함께 제정작업을 추진하고 있는 가칭 의료정보화촉진 및 개인정보보호에 관한 법률(안)은 시사점이 크다고 보기 때문에 소개하고자 한다.

  • PDF

Comparison of Direct Digital Radiography and Conventional Film Screen Radiography for Detection of Peritoneal Fluid in Dogs (개에서 복수의 평가에 있어서 필름-증감지 방사선 사진과 디지털 방사선 사진의 비교)

  • Choi, Ho-Jung;O, I-Se;Lee, Ki-Ja;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.29 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • This study was performed to evaluate the sensitivity of conventional film-screen radiography (CFSR) and direct digital radiography (DDR) for detection of various amounts of free peritoneal fluid. Ten adult male healthy beagles were used in this study. Radiographic examinations were performed in the right lateral and ventrodorsal positions. Fluid was injected in increments of 2.0 ml/kg of body weight up to 20.0 ml/kg of body weight. The images of CFSR and DDR were evaluated by two veterinary radiologists for evidence of abdominal fluid without knowledge of injected fluid volume. Data were evaluated by using the receiver operation curve (ROC) analysis and the area under the curve (AUC). There was no significant difference in detection of peritoneal fluid between DDR and CFSR in the ROC analysis. The accuracy of CFSR (0.805) was relatively higher than that of DDR (0.733), based on the ROC analysis and AUC. AUC of CFSR was higher in most injection doses. These results suggest that CFSR is more accurate than DDR for the detecting peritoneal fluid. Therefore, for situation in which digital radiographs are equivocal or small amount of fluid is suspected, other imaging modalities, such as ultrasonography would be helpful for determining the presence of fluids.

A Study of Scattered Radiation Effect on Digital Radiography Imaging System (디지털 방사선영상 시스템에서 산란선이 영상 품질에 미치는 영향)

  • Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of dig ital radiog raphy.

Image Comparison of Curved and Flat Panel Detectors for the Application of Digital Radiography Testing in Pipe Welds (배관 원둘레 이음 용접부의 디지털 방사선 투과 검사 적용을 위한 커브드 및 평면형 검출기의 영상 비교)

  • Yang, Jin-Wook;Cho, Kap-Ho;Nam, Mun-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.585-594
    • /
    • 2022
  • The detector for digital radiography testing, which is currently mainly used, consists of a detector with a flat structure, making it impossible to fully adhere to the digital radiography testing of the test object with curvature. In this study, a curved panel detector capable of adhering to curvature was fabricated to improve the quality of the digital image during the digital radiography testing of piping welds at industrial sites, and digital radiography images using flat and curved panel detectors were obtained for 6in pipes with different nominal thickness. As a result of the experiment, it was confirmed that the flat panel detector does not fully adhere to the pipe, resulting in a gap between the outer part of the pipe and the detector, resulting in a difference in the unsharpness and diffusion of the digital image. On the other hand, it was confirmed that the curved panel detector minimizes the gap between the pipe outer part and the detector, so that digital image diffusion is less than that of the flat panel detector. The higher the confidence of the image, the lower the quality and error in reading, so it is believed that higher quality images can be obtained than conventional flat panel detectors when using detectors that can be closely attached to the inspection object.