• Title/Summary/Keyword: 디지털 교합분석

Search Result 46, Processing Time 0.022 seconds

Convergence analysis of cusp variation symmetry of the mandibular second premolars using 3-dimensional virtual models - Focusing on college students in Jeollabuk-do (3차원 가상모형을 이용한 하악 제2소구치 교두 변이 대칭성에 대한 융복합적 분석 - 전북지역 일부 대학생을 중심으로)

  • Nam, Shin-Eun
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.317-323
    • /
    • 2022
  • This study aimed to qualitative analyze the cusp variation pattern of the mandibular second premolars using a three-dimensional virtual models, and to analyze the left-right bilateral symmetry with a quantitative analysis of the tooth surface area according to the cusp variation. 127 virtual mandibular second premolars were prepared and individual absolute/relative cusp area, total crown area and groove form were analyzed using RapidForm2004(INUS technology INC, Seoul, Korea). Independent t-test, Kruskal-Wallis test and chi-square were performed. As a result, the groove form showed high bilateral symmetry between the left and right sides. Based on the left side of groove form, the bilateral symmetry was 100.0% for the U pattern, and 73.7% for the H patterned, and 78.9% for the Y pattern(p<.001). The finding could be as a meaningful reference for manufacturing CAD/CAM dental prostheses, and it is expected that further studies will be conducted on more samples including the mandibular second premolar immediately after eruption.

Comparison of digital models generated from three-dimensional optical scanner and cone beam computed tomography (3차원 광학 스캐너와 콘빔CT에서 생성된 디지털 모형의 비교)

  • Kwon, Hyuk-Jin;Kim, Kack-Kyun;Yi, Won-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.60-69
    • /
    • 2016
  • Purpose: The objective of this study was to compare the accuracy of digital models from 3 dimentional (3D) optical scanner and cone beam computed tomography (CBCT). Materials and Methods: We obtained digital models from 11 pairs of stone casts using a 3D optical scanner and a CBCT, and compared the accuracy of the models. Results: The error range of average positive distance was 0.059 - 0.117 mm and negative distance was 0.066 - 0.146 mm. Statistically (P < 0.05), average positive distance was larger than $70{\mu}m$ and shorter than $100{\mu}m$, and that of negative distance was larger than $100{\mu}m$ and shorter than $120{\mu}m$. Conclusion: We concluded that the accuracy of digital models generated from CBCT is not appropriate to make final prostheses. However, it may be acceptable for provisional restorations and orthodontic diagnoses with respect to the accuracy of the digitalization.

Restoration of partial removable dental prosthesis after fabricating of surveyed crowns utilizing electronic surveying: a case report (전자 서베잉을 이용한 서베이드 크라운 제작 후 국소의치 수복: 증례보고)

  • Min, Byungkwee;Jun, Daejeon;Yang, Hongso;Park, Sangwon;Lim, Hyunpil;Yun, Kwidug;Park, Chan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.135-142
    • /
    • 2017
  • Adoption of CAD/CAM milling in dentistry has allowed production of more analytic and precise prosthesis. Such precision enables definite path of insertion and undercut to be provided in removable partial denture especially when designing a surveyed crown on an abutment tooth. This case is about the production of surveyed crown with proper path of insertion utilizing CAD/CAM electronic surveying method on a patient with edentulous maxilla. Resulting removable partial denture fit well and showed acceptable stability and retention with no clinical problem.

Facial asymmetry: Critical element of clinical successful treatment (임상가를 위한 특집 4 - 안면비대칭의 외과적 교정)

  • Hong, Jongrak
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.623-632
    • /
    • 2014
  • The facial asymmetries include maxillary, mandibular, and chin asymmetries, although the most common deformity is primarily in the mandible. Common causes of this type of asymmetry can include asymmetric growth of the condyle or the mandible. In these patients, the location of the Me would be deviated to the shorter side because of the asymmetric growth of the mandible, and, commonly, the maxillary occlusal plane would be tilted toward the deviated side because the maxilla likely grows asymmetrically according to the pattern of asymmetric mandibular growth. Three-dimensional CT images are ideal for evaluating the size and location of anatomic structures, and such reconstructed images allow the use of software that can show anatomic structures from numerous angles, allowing actual measurements of distances and angles without problems of magnification, distortion, or superimposition caused by 2-dimensional imaging. In the present study using 3D-CT imaging, the 8 parameters, including measurements of the upper midline deviation, maxillary canting in the canine and first molar regions, width of the upper arch, width of the mandible at the Go, vertical length of the ramus, inclination of the ramus, and deviation of the Me were easily measured. The dentition should be orthodontically decompensated and dental midline should ensure incisor midlines positioned in the midline of each jaw before surgical correction. Surgical correction could be considered such as canting or yawing correction in the frontal or horizontal aspect, respectively.

Review of recent developments for intra-oral scanners (현재 존재하는 구강 스캐너에 대한 고찰)

  • Choi, Jong-Hoon;Lim, Young-Jun;Lee, Won-Jin;Han, Jung-Suk;Lee, Seung-Pyo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.112-125
    • /
    • 2015
  • Making a model that is an accurate replica of the oral structure requires precision and efficiency. Nowadays, rapid technological advances bring digitalization in dentistry. One of the most important works in digital dentistry is three-dimensional modeling of the oral cavity and digitizing the 3D data. Among the three components of CAD/CAM, (1) data capture component (digitizers), (2) design component (CAD software), (3) manufacturing component (CAM), the basic component that has a significant impact on the other processes is the data capture component, i.e. intra-oral scanners. This literature review discusses the principles and clinical use of intra-oral scanners in dentistry based on recent publications of the past 5 years using the PubMed and Google Scholar databases.

In vitro evaluation methods on adaptation of fixed dental prosthesis (고정성 보철물의 적합도에 대한 실험적 평가방법)

  • Lee, Hyunho;Lee, Du-Hyeong;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Clinically, the fit of fixed prosthesis is an essential element for successful restoration. The fit of prosthesis is largely classified into marginal fit and internal fit, and various methods to assess these have been introduced including microscopic margin measurement, cross-sectional measurement, silicone replica technique, 3-dimensional scanning data superposition, weight technique and micro CT scanning. Thus, this study is aimed at proposing a more convenient and accurate measurement method of fits in a digital environment by comparatively analyzing the advantages and disadvantages of each known method based on existing literature.

Questionnaire survey for the clinical trial participants who experienced both digital and conventional impression (디지털 인상법과 종래인상법을 동시에 경험한 임상시험자를 대상으로 한 설문지분석)

  • Yang, Eunbee;Kim, Bongju;Lee, Jun Jae;Lee, Seung-Pyo;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.270-279
    • /
    • 2018
  • Purpose: The aim of this study was to assess the patients' perception, acceptance, and preference of the difference between a conventional impression and digital impression through questionnaire survey. Materials and Methods: Thirteen (6 male, 7 female) subjects who experienced both digital and conventional impression at the same day were enrolled in this study. Conventional impression were taken with polyvinylsiloxane and digital impression were performed using a newly developed intra-oral scanner. Immediately after the two impressions were made, a survey was conducted with the standardized questionnaires consisting of the following three categories; 1) general dental treatment 2) satisfaction of conventional impression 3) satisfaction of digital impression. The perceived source of satisfaction was evaluated using Likert scale. The distribution of the answers was assessed by percentages and statistical analyses were performed with the paired t-test, and P < 0.05 was considered significant. Results: There were significant differences of the overall satisfaction between two impression methods (P < 0.05). Digital impression showed high satisfaction in less shortness of breath and odor to participants compared to conventional impression. The use of an oral scanner resulted in a discomfort of TMJ due to prolonged mouth opening and in lower score of the scanner tip size. Conclusion: It was confirmed that the preference for the digital impression using intraoral scanner is higher than the conventional impression. Most survey participants said they would recommend the digital impression to others and said they preferred it for future prosthetic treatment.

Evaluation of marginal and internal gap under model-free monolithic zirconia restoration fabricated by digital intraoral scanner (디지털 구강스캐너로 모형 없이 제작한 전부지르코니아 수복물의 변연 및 내면 적합도 평가)

  • Lee, Jong-Won;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.210-217
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the marginal and internal adaptation of monolithic zirconia restoration made without physical model by digital intraoral scanner. Materials and methods: A prospective clinical trial was performed on 11 restorations as a pilot study. The monolithic zirconia restorations were fabricated after digital intraoral impression taking by intraoral scanner (TRIOS, 3shape, Copenhagen, Denmark), computer-aided designing, and milling manufacturing process. Completed zirconia crowns were tried in the patients' mouth and a replica technique was used to acquire the crown-abutment replica. The absolute marginal discrepancy, marginal gap, and internal gap of axial, line angle, and occlusal part were measured after sectioning the replica in the mesiodistal and buccolingual direction. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U test (${\alpha}=.05$). Results: From the adaptation analysis by replica, the statistically significant difference was not found between mesiodistal and buccolingual sections (P>.05), but there was significant difference among the measurement location (P<.01). The amount of absolute marginal discrepancy was larger than those of marginal gap and internal gap (P<.01). Conclusion: Within the limitations of this study, the adaptation accuracy of model-free monolithic zirconia restoration fabricated by intraoral scanner exhibited clinically acceptable result. However, the margin of zirconia crown showed tendency of overcontour and cautious clinical application and follow up is necessary.

Comparison of the accuracy of implant digital impression coping (임플란트 디지털 인상용 코핑의 정확성 비교)

  • Ahn, Gyo-Zin;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the accuracy of impression taking method using the encoded healing abutment, scan body and pick-up impression coping with different implant angulations. Materials and Methods: Master model was fabricated by 3D printer and three implants were placed into the model with 0°, 10° and 20° mesial angulation. The abutments were secured to each implants and master model was scanned to make a reference model. Group P model was fabricated using pick-up impression copings and model was scanned after securing the abutments. Encoded healing abutment (Group E) and scan body (Group S) were secured on the master model and digital impression was taken using intraoral scanner 15 times each. Each STL files of test groups were superimposed with reference model using best fit alignment and root mean square (RMS) value was analyzed. Results: The RMS values were lowest in Group P, followed by Group S and Group E. Group P showed significant difference with Group S and E (P < 0.05) while there was no significant difference between Group S and E. Correlation between implant angulation and RMS value was significant in Group E (P < 0.05). Conclusion: The pick-up impression coping method showed higher accuracy and there was no significant difference in accuracy between the healing abutment and the scan body. The clinical use of the encoded healing abutment is possible, but it should be used with caution in the case of angulated implant.

Three dimensional accuracy analysis of dental stone casts fabricated using irreversible hydrocolloid impressions (알지네이트 인상체에서 제작된 치과용 석고 모형의 정확도에 대한 삼차원 디지털 분석)

  • Joo, Young-Hun;Lee, Jin-Han
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.316-328
    • /
    • 2015
  • Purpose: The objects of this study was to evaluate the accuracy of the dental stone casts made from alginate impressions according to storage condition and stone pouring time. Materials and Methods: Each of upper and lower impressions of dental model was taken. The dental stone models were made immediately, 10, 30, 60, 180, 360 minutes after the impressions were taken at each storage condition. 3D models were constructed by scanning the stone model using 3D laser scanner. With Reference points, positioned on digital models, linear measurements of the dimensional change were compared by 3D metrology software, 3D average models were made and superimposition to identify the specific site of dimensional change and to measure surface deviation (mm). Results: Dental stone models which were made immediately after taking the impression showed the smallest linear dimensional change. As the stone pouring time was prolonged, the linear dimensional change was increased. More than 180 minutes after impression taking, linear dimensional change and surface distortion increased in the posterior molar region, regardless of the storage condition. Conclusion: For the optimum accuracy of the dental stone casts, alginate impression should be poured as soon as possible. If there were a need for storing, a humidor with 100% relative humidity must be used and be stored less than 180 minutes to fabricate the accurate dental model.