• Title/Summary/Keyword: 디젤 노즐

Search Result 68, Processing Time 0.023 seconds

Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger (중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Ghal, Sang-Hak;Ha, Ji-Soo;Kim, Seung-Kuk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.517-524
    • /
    • 2005
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the mean1ine prediction method, geometric design and performance curve for compressor was done and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and performed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.

  • PDF

Influence of SAC Shape on Injection Characteristics and Spray (SAC 형상이 분사특성 및 분무형상에 미치는 영향)

  • 김상진;권순익
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.11-18
    • /
    • 2001
  • To clarify the influence of SAC shape of hole-type diesel nozzle on injection characteristics and spray patterns, the injection rate of three nozzle types(standard SAC nozzle, Needle-cut VCO nozzle and VCO nozzle) were measured by Zeuch's method and pictures of the sprays were taken by CCD camera. As the pump speed became higher, the injection characteristics of the three nozzles were different. Injection rate and perssure curves at the high pressure pipe in Needle-cut VCO nozzle were much more similar to the VCO nozzle than those of the SAC nozzle. When the needle was at pre-lift period for all speeds, the spray of the Needle-cut VCO nozzle showed almost the same shape as the SAC type nozzle. There was no differense in spray pattern at the needle full-lift periods.

  • PDF

A Study on Spray Behaviors with Variation of Nozzle Diameter in the Diesel Combustion Chamber (분사 노즐 분공경에 따른 디젤 엔진 연소실내 분무 거동에 관한 연구)

  • 차경세;정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.18-27
    • /
    • 2000
  • The spray models incorporated into the GTT code were tested for free spray, spray in swirling flows and the sprays impinging on a flat wall. And the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the spray behavior in the diesel combustion chamber have been numerically analyzed for variation of nozzle diameter. Also, the effects of nozzle diameter in diesel combustion was investigated experimentally by measuring the performance in a D.I engine. This study provides the information for the spray characteristics and emissions with variation of nozzle diameter. As a result, it has shown that decreasing nozzle diameter resulted in improving smoke and specific fuel consumption in a middle speed range.

  • PDF

The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry (노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

LPG Spray Behavior Near Injection Nozzle (분사노즐 근처의 LPG 분무거동)

  • Jo, H.C.;Oh, S.W.;Lee, G.H.;Bae, Y.J.;Park, K.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.16-21
    • /
    • 2002
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. This study addresses the analysis of the LPG spray behavior near injection nozzle. The LPG spray photographs are compared with sprays of diesel fuel at the same conditions. The LPG spray photos show that the dispersion characteristic depends very sensuously on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure at this test condition, but the angle value is quickly reduced at the condition over the pressure.

  • PDF

Simulation on the Characteristics of PLN Diesel Injection System by Cam Profile (연료캠 형상에 따른 PLN 디젤 분사계의 분사특성에 관한 시뮬레이션)

  • Lee, J.H.;Wang, W.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1997
  • In this study, in order to investigate the influence of cam profile on the injection rate, the characteristics of injection in PLN (pump - line - nozzle) diesel injection system were simulated. Six types of the profile of fuel cam were used for simulation. The maximum injection pressure and maximum injection rate of initial and end phase were analyzed to demonstrate the characteristics of injection. The mathematical model of the injection system and the computation results were verified by experimental results. Simulation results showed that the maximum injection pressure, maximum injection rate, injection quantity and pressure drop in the end phase were proportional to the velocity of fuel cam during the effective stroke.

  • PDF

An Experimental Study on the Energy Separation in a Low Pressure Vortex Tube for Engine (기관적용 저압용 vortex tube의 에너지 분리특성에 관한 실험적 연구)

  • 오동진;임석연;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.235-241
    • /
    • 2002
  • The process of energy separation in a low pressure vortex tube with air as a working medium is studied In detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in the vortex tube provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. In this study Outer tube is used for the application of Diesel engine exhaust. The hot gas flow is fumed 180° and passes the outside of the vortex tube a second time heating it. From this geometric setup of a vortex tube the effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

Aerodynamic Three Dimensional Geometry and Combustor Design for the Compressor of the Medium Speed Diesel Engine Turbocharger (중형 엔진 터보차져의 원심압축기에 관한 공력학적 3차원 형상 및 구동용 연소기 설계)

  • Ryu, Seung-Hyup;Ghal, Sang-Hak;Ha, Ji-Soo;Kim, Seung-Kuk;Kim, Hong-Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.30-38
    • /
    • 2006
  • An aerodynamic design for centrifugal compressor which was applied to medium speed diesel engine has been done. First of all, exact compressor specifications must be defined by accurate engine system matching. This matching program has been developed. Using the meanline prediction method, geometric design and performance curves for compressor were established and verified by comparing three dimensional viscous CFD results. The deviation at the design point was about 2.3%. Combustor has been designed and manufactured for the performance test of medium speed diesel engine turbocharger. Fuel nozzle of combustor was designed and its characteristics was analyzed by PIV and PDPA test equipment. Through these results, spray characteristics were studied and flow coefficient equation was deduced.