• Title/Summary/Keyword: 드라이빙 시뮬레이터

Search Result 20, Processing Time 0.022 seconds

A Study on Assessing User Preferences for Autonomous Driving Behavior Using a Driving Simulator (드라이빙 시뮬레이터를 활용한 자율주행 이용자 선호도 평가에 관한 연구)

  • Dohoon Kim;Sungkab Joo;Homin Choi;Junbeom Ryu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.147-159
    • /
    • 2023
  • In order to make autonomous vehicles more trustworthy, it is necessary to focus on the users of autonomous vehicles. By evaluating the preferences for driving behaviors of autonomous vehicles, we aim to identify driving behaviors that increase the acceptance of users in autonomous vehicles. We implemented two driving behaviors, aggressive and cautious, in a driving simulator and allowed users to experience them. Biometric data was collected during the ride, and pre- and post-riding surveys were conducted. Subjects were categorized into two groups based on their driving habits and analyzed against the collected biometric data. Both aggressive and cautious driving subjects preferred the cautious driving behavior of autonomous vehicles.

Implementation of In-Car GNSS Jamming Signal Data Generator to Test Autonomous Driving Vehicles under RFI Attack on Navigation System (항법 시스템 오작동 시 자율주행 알고리즘 성능 테스트를 위한 차량 내 재밍 신호 데이터 발생기 구현)

  • Kang, Min Su;Jin, Gwon Gyu;Won, Jong Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.79-94
    • /
    • 2021
  • A GNSS receiver installed in autonomous vehicles is the most essential device for its navigation. However, if an intentional jamming signal is generated, there is a risk of exposure to an accident risk due to deterioration of the GNSS sensor's performance. Research is required to prevent this, and accordingly, a jamming generating device must be provided. However, according to the provisions of the law related to jamming, this is illegal. In this paper, we implement an in-vehicle jamming device that complies with the provisions of the law and does not affect the surrounding GNSS sensors. Driving simulation is used to evaluate the performance of the GNSS algorithm, and the malfunction of autonomous vehicles occurring in the interference environment and data errors output from the GNSS sensor are analyzed.

Development of driving simulator modules for driving safely (주행경제를 위한 드라이빙 시뮬레이터 모듈 연구)

  • Chung, Sung-Hak
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.569-578
    • /
    • 2008
  • The aim of this study is to propose economical safety driving speed index which those are geometric road status; examine the levels of which those cost-benefit of driving fuel expenditure; are search road safety design and operational technology for driving simulators. For the objective, we analyzed the current status of driving fuel expenditure and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently driving system is expected to be implemented in the national highway design system.

  • PDF

A Study on the Driver's Preferences of Prividing Direction Information in Road Signs (방향표지 정보제공 방법에 대한 운전자 선호도 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.69-76
    • /
    • 2015
  • Although traffic information has been actively analyzed using big data, it has not been used as much with the consideration of driver characteristics. Among the various types of information, road signs can directly affect the driver. Road signs must provide the optimal information that enables drivers to reach their destinations with ease as well as information suitable for navigation systems. However, present road sign rules provide standardized information, regardless of the road type or size. This study suggests a method for providing road information that will help drivers determine their behavior. First, the minimum character size that can be used on a road sign for each design speed was obtained with respect to the visibility and decipherability of a road sign. Instead of conventional diagram-based direction guidance, a scenario using split-based direction guidance was created. To verify the effectiveness of the provided information, a three-dimensional simulated road environment was constructed, and a driving simulator was used for the test. At a simple plane intersection, the driver was not greatly influenced by directional guidance, but at a complex, three-dimensional intersection, the driver preferred summary-based directional guidance, which is instinctive guidance, over diagram-based guidance. On the basis of the test results, a secondary verification test that applied split-based guidance at a three-dimensional intersection confirmed that the driver had no problems in making decisions.

Analyzing the Impact of Changes in the Driving Environmenton the Stabilization Time of Take-over in Conditional Automation (조건부 자율주행시 주행환경 변화에 따른 제어권 전환 안정화 시간 영향 분석)

  • Sungho Park;Kyeongjin Lee;Jungeun Yoon;Yejin Kim;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.246-263
    • /
    • 2023
  • The stabilization time of take-over refers to the time it takes for driving to stabilize after the take-over. Following a take-over request from an automated driving system, the driver must become aware of the road driving environment and perform manual driving, making it crucial to clearly understand the relationship between the driving environment and stabilization time of take-over. However, previous studies specifically focusing on stabilization time after take-over are rare, and research considering the driving environment is also lacking. To address this, our study conducted experiments using a driving simulator to observe take-over transitions. The results were analyzed using a liner mixed model to quantitatively identify the driving environment factors affecting the stabilization time of take-over. Additionally, coefficients for stabilization time based on each influencing factor were derived.

Development of a Driving Simulator for Telematics Human-Machine Interface Studies (텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발)

  • Koo, Tae-Yun;Kim, Bae-Young;Shin, Hee-Jong;Son, Young-Tak;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

Comparative Study on Difference in Driver's Workload between Driving Simulator and Field Driving in Tunnel, Highway (드라이빙 시뮬레이터 주행과 현장주행시 운전자 반응 비교 연구)

  • Kim, Hyun Jin;Kim, Ju Young;Choi, Gyeong Im;Ju, Che Hong;OH, Cheol
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • PURPOSES : This study analyzed the difference in a driver's workload between using a driving simulator and field driving in tunnel, highway. METHODS : Based on the literature review, it was found that a driver's workload could be quantified using biosignals. This study analyzed the biosignal data of 30 participants using data collected while they were using a driving simulator and during a field test involving tunnel driving. Relative energy parameter was used for biosignal analysis. RESULTS : The driver's workload was different between the driving simulator and field driving in tunnels, highway. Compared with the driving simulator test, the driver's workload exhibited high value in field driving. This result was significant at the 0.05 level. The same result was observed before the tunnel entrance section and 200 m after the entrance section. CONCLUSIONS : This study demonstrates the driving simulator effect that drivers feel safer and more comfortable using a driving simulator than during a field test. Future studies should be designed considering the result of this study, age, type of simulator, study site and so on.

Development of wrapper class for compatibility of Multi Input Device in Vega Prime$^{TM}$ engine (베가프라임 엔진상에서 다중입력장치 호환을 위한 랩퍼 클래스 개발)

  • Kim, Kwang-Tae;Shin, Hyun-Shil;Park, Hyun-Woo;Lee, Dong-Hoon;Yun, Tae-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1093-1098
    • /
    • 2006
  • VR 엔진은 일부 입력장치에 대해서만 제한적으로 지원하기 때문에, 개발자가 원하는 입력장치를 사용하지 못하는 경우가 있으며, 가격 또한 고가이기 때문에 특수한 입력장치를 사용하기 위해, 다른 VR 엔진이나 별도의 옵션을 구매하기에는 경제적인 부담이 많이 든다. 이러한 문제를 해결하기 위해 본 논문에서는 개발자가 사용하고자 하는 입력장치와 VR 엔진의 호환을 위한 랩퍼 클래스를 제안한다. 개발한 랩퍼 클래스는 VR 엔진에서 조이스틱을 제어할 수 있는 조이스틱 클래스와 USB 캠을 통하여 영상을 획득하기 위한 USB 캠 클래스이다. 조이스틱 클래스는 입력장치 클래스를 상속받은 후 DirectX 를 이용하여 입력장치를 셋업 하고, 입력장치의 데이터 값을 처리한 후 VR 엔진의 API 로 값을 넘겨주기 전에 후킹하여 조이스틱을 제어할 수 있다. USB 캠 클래스는 VFW(Video for Window)를 사용하여 캠의 영상을 획득하여 버퍼에 저장한 후 VR 엔진의 디스플레이 버퍼에 값을 넘겨서 캠의 영상을 VR 엔진에서 디스플레이 할 수 있다. 이러한 방법을 통해 조이스틱, USB 캠 같은 입력장치를 VR 엔진과 호환할 수 있으며, 다른 종류의 입력장치에 대하여서도 본 연구에서 개발한 랩퍼 클래스를 상속받아 사용할 수 있다. 본 논문에서 사용한 VR 엔진은 Vega Prime 엔진이며, Vega Prime 엔진의 API 에 개발한 랩퍼 클래스를 추가하여 드라이빙, 영상인식 시뮬레이터를 개발한 결과, 효과적이고 경제적으로 입력장치의 연동이 가능함을 확인할 수 있었다.

  • PDF

The Effect of Pseudoneglect on Visual Perception and Driving : Using a Driving Simulator (가성무시가 시지각과 운전수행에 미치는 영향 : 드라이빙 시뮬레이터를 이용하여)

  • Jang, Sung-Lee;Ku, Bon-Dae;Na, Duk-Lyul;Lee, Jang-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1233-1238
    • /
    • 2009
  • This study's aim was to confirm that pseudoneglect affects visual attention through car laterality, using a driving simulator with either bisection or quadrisection strategies being applied to road usage. On the pencil and paper tests, the left quadrisection and bisection marks deviated significantly to the left. While driving, the car was significantly lateralized to the right of the lane regardless of conditions. However, in terms of relative laterality, the biggest left laterality occurred on roads 1(bisection), while the smallest left laterality occurred on roads 2 (right quadrisection). Thus, the effect of pseudoneglect was demonstrated in both the pencil and paper tests and the driving simulation task. Also, roads 2 and 4, which were driven on the right side of the lane, showed a tendency for drivers to avoid the centerline, as this was the expected cause of right laterality. This study demonstrated that the pseudoneglect phenomenon can occur in a routine driving task.

  • PDF

Influence on Driver Behavior According to Providing Collision Avoidance Information on Highway (고속도로의 전방 장해물 충돌방지정보 제공이 운전행동에 미치는 영향)

  • Jeon, Yong-Uk;Dae, Mun-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.137-143
    • /
    • 2009
  • It is necessary to develop driving assistant information in order to prevent a rear-end collision with a crashed car which is at the blind curve on highway. Laboratory experiments were performed using a driving simulator to keep the traffic environment constant. This research was evaluated the effect of driver behavior according to providing collision avoidance information which was consisted of advisory, caution, and warning information by the dangerous degree of traffic situation. Driver behavior was evaluated to analyze the collision avoidance with a crashed car, and glance behavior was examined to measure the eye movements to the display on which provided the collision avoidance information. After experiment, the significance was evaluated on provided collision avoidance information. As the result of this research, the number of collision accident is reduced when the phased information was provided. In addition, it is clear that auditory information is more important than visual information in the case of providing the second information.