• Title/Summary/Keyword: 동해남부 해역

Search Result 124, Processing Time 0.023 seconds

Analysis of Ground-Motion Characteristics of the 2004 Offshore Uljin Earthquake through Atmospheric Infrasound Observation (인프라사운드 관측을 통한 2004년 울진해역지진의 지반운동 특성 분석)

  • Che, Il-Young;Yun, Yeo-Woong;Lim, In Seub
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.647-657
    • /
    • 2020
  • Infrasound signals associated with the 29 May 2004 offshore Uljin earthquake (Mw 5.1) were recorded at infrasound arrays of CHNAR (epicentral distance of 321 km) and TJNAR (256 km). Back-azimuths, indicating the directions to source locations, varied more than 28° broadly for the long-lasting signals over several minutes. From the analysis of the back-projecting location method and attenuation correction for infrasound propagation, the infrasound waves were to be generated by the interaction (diffraction) between seismic waves and topography in an area of ~4,600 ㎢ connecting the Samcheok-Uljin-Pohang regions. The maximum sound source pressure (BSP) was estimated to be 11.1 Pa. This result was consistent with the peak sound pressure (PSP) calculated by the Rayleigh integral approximation to the peak ground acceleration (PGA) dataset. In addition, the minimum PGA that was detectable at the two arrays was estimated to be ~3.0 cm s-2. Although the earthquake occurred offshore, diffracted infrasound signals were effectively generated by ground motions when seismic surface waves passed through high-topographic regions in the eastern Korean Peninsula. The relationship between infrasound source pressure and PGA can be applicable to characterize the ground motions in areas with insufficient seismological observatories.

Chemical Characteristics of Water Types in the Korea Strait (해양 화학적 특성으로 본 대한해협의 수계)

  • LEE Won Jae;CHO Kyu Dae;CHOO Hyo Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.219-229
    • /
    • 1984
  • Physical and chemical survey on western channel of the Korea Strait was made using oceanographic data from July 25 to July 31, 1983. Four water types were distinguished at western channel: runoff of the Nakdong River, Tsushima Current Waters, Keoje Coastal Waters, and Ulsan Coastal Waters. Influence of the Nakdong River was greater at Southern East Coast near Yeong-Do Island in Pusan than at Keoje Coast. General characteristics of these four water types were as follows : For runoff of the Nakdong River, transparency was within 3 m, water colour chinese yellow (number 11), surface temperature $18{\sim}19^{\circ}C$, salinity less than $31\%0$, surface dissolved oxygen (D.O.) $4.5{\sim}5.0ml/l$, contents of phosphate $0.25{\sim}0.5{\mu}g-at./l$ ; these values were the highest among these four water types. For Tsushima Current waters, transparency was greater than 15 m, waters color blue (number $2{\sim}4$), surface temperature about $23^{\circ}C$, salinity $32{\sim}33\%0$, and surface D.O. greater than 5,0 ml/l. Phosphate, nitrate and silicate were less than 0.25, 2.0, and $2.5{\mu}g-at./l$, respectively; these values were the lowest among these four water types. Keoje Coastal Waters had low temperature ranging $20{\sim}21^{\circ}C$ at surface, and high salinity greater than $33\%0$. D.O. was less than 5.0 ml/l, phoshpate, $0.5{\mu}g-at./l$ nitrate and silicate were less than $3.5{\mu}g-at./l$. Ulsan Coastal Waters had the lowest surface temperature among these four types; surface temperature was less than $16^{\circ}C$, salinity greater than $33.5\%0$, and D.O., phosphate and nitrate had very high values. It seems that these high values resulted from upwelling phenomena.

  • PDF

Changes in Marine Environmental Factors and Phytoplankton Community Composition Observed via Short-Term Investigation in a Harbor in the Eastern Part of the South Sea of Korea (남해동부연안항만에서 하계 단주기 조사에 따른 해양환경 및 식물플랑크톤 군집조성의 변화)

  • Lee, Minji;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.669-676
    • /
    • 2017
  • To understand the relationship between environmental factors and phytoplankton community structures and why early outbreaks of Cochlodinium polykrikoides occur in the inner bay of Korea, short-term investigations were conducted at 17 stations in the eastern part of the South Sea of Korea, with sessions every two weeks from July 7 to August 24, 2016. The water temperature increased from $22.3^{\circ}C$ in the first survey to $28.4^{\circ}C$ in the fourth survey, which was a rise of about $6.01^{\circ}C$. Salinity was relatively high at Stns. 8 13 in the inner bay. In the first survey, rainfall of about 150 mm was observed, so nutrients were supplied at a high level and a high concentrate of Chl. a was observed. Cryptophyta (Crpytomonas spp.) represented 58.3 % of the community, followed by Bacillariophyta at 33.8 %. In particular, at Stn. 5, Dinophyta Prorocentrum spp. accounted for a very high percentage, 32.2 %. In the second survey, low phytoplankton populations were observed, and Bacillariophyta (Chaetoceros spp.) accounted for 61.0 %. At Stn. 4, Skeletonema spp. showed high populations but did not appear at other stations even at a low density. In the third and fourth surveys, phytoplankton populations were very low. Bacillariophyta represented 78.0 % in the third study and 73.3 % in the fourth. Interestingly, although the appearance of C. polykrikoides was investigated at the beginning of the red tide in the coastal area, they were not observed inshore, implying that the likelihood of inflow by the germination of resting cysts was low for the inner bay during this study period. In addition, environmental characteristics such as salinity and nutrient presence were significantly different between sampling stations due to the existence of a semi-closed bay in the southern sea, resulting in dominant phytoplankton species and community composition differing in these short-term investigations.

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF