DOI QR코드

DOI QR Code

Analysis of Ground-Motion Characteristics of the 2004 Offshore Uljin Earthquake through Atmospheric Infrasound Observation

인프라사운드 관측을 통한 2004년 울진해역지진의 지반운동 특성 분석

  • Che, Il-Young (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Yun, Yeo-Woong (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lim, In Seub (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 제일영 (한국지질자원연구원, 지진연구센터) ;
  • 윤여웅 (한국지질자원연구원, 지진연구센터) ;
  • 임인섭 (한국지질자원연구원, 지진연구센터)
  • Received : 2020.11.01
  • Accepted : 2020.12.07
  • Published : 2020.12.31

Abstract

Infrasound signals associated with the 29 May 2004 offshore Uljin earthquake (Mw 5.1) were recorded at infrasound arrays of CHNAR (epicentral distance of 321 km) and TJNAR (256 km). Back-azimuths, indicating the directions to source locations, varied more than 28° broadly for the long-lasting signals over several minutes. From the analysis of the back-projecting location method and attenuation correction for infrasound propagation, the infrasound waves were to be generated by the interaction (diffraction) between seismic waves and topography in an area of ~4,600 ㎢ connecting the Samcheok-Uljin-Pohang regions. The maximum sound source pressure (BSP) was estimated to be 11.1 Pa. This result was consistent with the peak sound pressure (PSP) calculated by the Rayleigh integral approximation to the peak ground acceleration (PGA) dataset. In addition, the minimum PGA that was detectable at the two arrays was estimated to be ~3.0 cm s-2. Although the earthquake occurred offshore, diffracted infrasound signals were effectively generated by ground motions when seismic surface waves passed through high-topographic regions in the eastern Korean Peninsula. The relationship between infrasound source pressure and PGA can be applicable to characterize the ground motions in areas with insufficient seismological observatories.

2004년 5월 29일 발생한 울진해역지진(Mw 5.1)과 관련된 대기 인프라사운드 신호가 철원(진앙 거리 321 km) 및 대전(256 km) 관측소에 기록되었다. 신호의 지속시간은 수 분 이상이며, 음원 방향을 지시하는 후방-방위각은 28°이상의 큰 변화를 보였다. 역-투사 방법과 신호 감쇄 보정 결과, 인프라사운드 신호는 삼척-울진-포항까지 연결되는 약 4,600 ㎢ 면적의 지반운동으로 발생하였으며, 음원 최대 크기(BSP)는 11.1 Pa로 계산되었다. 이 결과는 최대지반가속도(PGA) 자료로 계산한 음원 최대 크기(PSP)와도 부합하고 있으며, 지진 발생 당시 인프라사운드 신호 탐지를 가능케 했던 최소 지반운동은 ~3.0 cm s-2 이상으로 확인되었다. 울진해역지진이 비록 동해 해역에서 발생하였지만, 진앙과 가까운 강원도 남부-경상북도의 고지대를 따라 전파한 표면파의 지반운동으로 회절 인프라사운드가 효과적으로 발생한 것으로 해석된다. 인프라사운드 관측을 통한 원거리 지진 지반운동 특성 추정 방법은 지진관측망이 설치되어 있지 않거나 관측소 수가 적은 지역을 대상으로 활용이 가능할 것이다.

Keywords

References

  1. Becker, J., Sandwell, D., Smith, W., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P., 2009, Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355-371. https://doi.org/10.1080/01490410903297766
  2. Blackstock, D.T., 2000, Fundamentals of physical acoustics. Wiley-Interscience, New York, USA, 541 p.
  3. Cansi, Y., 1995, An automatic seismic event processing for detection and location: The PMCC method. Geophysical Research Letters, 22, 1021-1024. https://doi.org/10.1029/95GL00468
  4. Che, I.-Y., Lee, H.-I., Jeon, J.-S., Shin, I.-C., and Chi, H.-C., 2010, State-of-the-art studies on infrasound monitoring in Korea. Jigu-Mulli-wa-Mulli-Tamsa, 13(3), 286-294. (in Korean)
  5. Che, I.-Y., Stump, B., and Lee, H.-I., 2011, Experimental characterization of seasonal variations in infrasonic travel times on the Korean Peninsula with implications for infrasound event location. Geophysical Journal International, 185(1), 190-200. https://doi.org/10.1111/j.1365-246X.2011.04948.x
  6. Evers, L.G. and Haak, H.W., 2007, Infrasonic forerunners: Exceptionally fast acoustic phases. Geophysical Research Letters, 34, L10806. https://doi.org/10.1029/2007GL029353
  7. Evers, L.G., Brown, D., Heaney, K.D., Assink, J.D., Smets, P.S.M., and Snellen, M., 2014, Evanescent wave coupling in a geophysical system: Airborne acoustic signals from the Mw 8.1 Macquarie Ridge earthquake. Geophysical Research Letters, 41, 1644-1650. https://doi.org/10.1002/2013GL058801
  8. Garcia, R., Lognonne, P., and Bonnin, X., 2005, Detecting atmospheric perturbations produced by Venus quakes. Geophysical Research Letters, 32, L16205. https://doi.org/10.1029/2005GL023558
  9. Godin, O.A., 2008, Sound transmission through water-air interfaces: new insights into an old problem. Contemporary Physics, 49(2), 105-123. https://doi.org/10.1080/00107510802090415
  10. Hernandez, B., Le Pichon, A., Vergoz, J., Herry, P., Ceranna, L., Pilger, C., Marchetti, E., Ripepe, M., and Bossu, R., 2018, Estimating the ground-motion distribution of the 2016 Mw 6.2 Amatrice, Italy earthquake using remote infrasound observations. Seismological Research Letters, 89, 2227-2236. https://doi.org/10.1785/0220180103
  11. Jo, N.-D. and Baag, C.-E., 2001, Stochastic prediction of strong ground motions in southern Korea. Journal of the Earthquake Engineering Society of Korea, 5, 17-26.
  12. Kang, T.-S. and Baag, C.-E., 2004, The 19 May 2004, Mw=5.1, offshore Uljin earthquake, Korea. Geosciences Journal, 8, 115-123. https://doi.org/10.1007/BF02910189
  13. Kim, T.S., Hayward, C., and Stump, B., 2010, Calibration of acoustic gauge in the field using seismic Lg phase and coupled high-frequency local infrasound. Bulletin of the Seismological Society of America, 100(4), 1806-1815. https://doi.org/10.1785/0120090262
  14. Korea Meteorological Administration (KMA), 2012, Historical earthquake records in Korea (2-1904 Year). 11-1360395-000267-01, KMA.
  15. Le Pichon, A., Ceranna, L., and Vergoz, J., 2012, Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. Journal of Geophysical Research, 117, D05121.
  16. Le Pichon, A., Guilbert, J., Vega, A., Garces, M., and Brachet, N., 2002, Ground-coupled air waves and diffracted infrasound from the Arequipa earthquake of June 23, 2001. Geophysical Research Letters, 29, 1886.
  17. Le Pichon, A., Herry, P., Mialle, P., Vergoz, J., Brachet, N., Garces, M., Drob, D., and Ceranna, L., 2005, Infrasound associated with 2004-2005 large Sumatra earthquakes and tsunami. Geophysical Research Letters, 32, L19802. https://doi.org/10.1029/2005GL023893
  18. Le Pichon, A., Vergoz, J., Herry, P., and Ceranna, L., 2008, Analyzing the detection capability of infrasound arrays in Central Europe. Journal of Geophysical Research, 113, D12115. https://doi.org/10.1029/2007jd009509
  19. Mutschlecner, J.P. and Whitaker, R.W., 2005, Infrasound from earthquakes. Journal of Geophysical Research, 110, D01108. https://doi.org/10.1029/2004jd005067
  20. Olson, J.V., Wilson, C.R., and Hansen, R.A., 2003, Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophysical Research Letters, 30(23), 2195.
  21. Park, S.-C. and Mori, J., 2005, Source parameters of the May 29, 2004 South Korea earthquake (ML 5.2). Earth Planets Space, 57, 471-475. https://doi.org/10.1186/BF03352581
  22. Sylvander, M., Ponsolles, C., Benahmed, S., and Fels, J.-F., 2007, Seismoacoustic recordings of small earthquakes in the Pyrenees: Experimental results. Bulletin of the Seismological Society of America, 97(1B), 294-304. https://doi.org/10.1785/0120060009
  23. Szuberla, C. and Olson, J., 2004, Uncertainties associated with parameter estimation in atmospheric infrasound arrays. Journal of Acoustical Society of America, 115 (1), 253-258. https://doi.org/10.1121/1.1635407
  24. Thacker, W., Zhang, J., Watson, L., Birch, J., Iyer, M., and Berry, M., 2010, Algorithm 905: SHEPPACK: Modified Shepard algorithm for interpolation of scattered multivariate data. ACM Transactions on Mathematical Software, 37(3), 20.
  25. Walker, K.T., Le Pichon, A., Kim, T.S., de Groot-Hedlin, C., Che, I.-Y., and Garces, M., 2013, An analysis of ground shaking and transmission loss from infrasound generated by the 2011 Tohoku earthquake. Journal of Geophysical Research, 118(12), 831-12,851.
  26. Watada, S., Kunugi, T., Hirata, K., Sugioka, H., Nishida, K., Sekiguchi, S., Oikawa, J., Tsuji, Y., and Kanamori, H., 2006, Atmospheric pressure change associated with the 2003 Tokachi-Oki earthquake. Geophysical Research Letters, 33, L24306. https://doi.org/10.1029/2006GL027967