• Title/Summary/Keyword: 동적 최대변위

Search Result 129, Processing Time 0.027 seconds

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.

Seismic Fragility Analysis of a RC Bridge Including Earthquake Intensity Range (지진강도 범위를 고려한 철근콘크리트 교량의 지진취약도 해석)

  • Lee, Do Hyung;Jeong, Hyeon Do;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • In the present study, influence of earthquake intensity range on seismic fragility analysis of a RC bridge has been evaluated. For this purpose, a RC bridge damaged by a past earthquake has been selected, and analytical model of the bridge has been developed for nonlinear dynamic time-history analysis. A total of 25 recorded earthquake motions have been employed for the nonlinear analysis from which maximum lateral drift ratio of piers are obtained. Then, seismic fragility analysis has been conducted for the bridge using the nonlinear analysis results. Probability of exceeding damage has been computed in terms of using the maximum likelihood estimation, and effect of earthquake intensity range of the motions on seismic fragility curves has been assessed analytically. Analytical predictions indicate that the earthquake intensity range is of utmost significance for rationale seismic fragility analysis reflecting a physical damage state of a bridge and seismic performance evaluation of such bridge.

Static and Dynamic Stability Evaluation of Model Guardrail Posts Based on Geotechnical Properties (지반특성에 기초한 모형 연성방호책 지주의 정적 및 동적안정성 평가)

  • Lim, Yu-Jin
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-245
    • /
    • 2009
  • Availability of pressuremeter test for evaluation of geotechnical properties of foundation soil into which guardrail post is to be installed is investigated in this study. First, an analysis method of the post based on the pressuremeter test is proposed that can obtain bending moment and load-deformation profiles of the post. Then static horizontal load test onto a small scale guardrail post is performed in order to get bearing capacity and load-deformation pattern of the model post. The obtained results are compared with the load-deformation curves and bearing capacity of the post obtained from the pressuremeter method. In addition horizontal impact test to the post is performed using a model bogie car in order to check failure pattern around the model foundation and to investigate dynamic bearing capacity due to deceleration and inertia force of the soil. It is verified that the pressuremeter test is so useful and reasonal technique to analyze road foundation-post interaction.

  • PDF

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (단부 경계조건을 고려한 매설관의 동적응답 해석)

  • Jeong Jin-Ho;Lee Byong-Gil;Jung Du-Hwoe;Park Byung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.33-43
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study, The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance f3r the axial direction. On the other hand, we have not been able to observe a resonance in the analysis of the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement, the strain and its position.

A Study on Vibratory Behavior of Steel Sheet Pile Installed in Sand Ground (모래지반에 대한 강널말뚝의 진통항타거동 연구)

  • Lee, Seung-Hyun;Lee, Jong-Ku;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.79-90
    • /
    • 2007
  • Behaviors of instrumented steel sheet piles which are installed in sand ground by vibratory hammer were investigated. Especially, stresses acting on the pile during vibratory driving, efficiency factor which reflects differences between theoretical driving force and actually delivered acting force, justifiability of rigidity of steel sheet pile, dynamic resistance characteristics of soil and penetration characteristics of sheet pile were analysed. According to the field test results it is justifiable that steel sheet pile behaves as a rigid body during vibratory driving. And it can be seen that maximum stress acting on sheet pile section is far less than tensile strength of the material. Value of the maximum section force at sheet pile head was 72% of that estimated from theoretical equation. Magnitudes of displacement amplitudes computed from displacement-time history curve corresponding to four penetration depths were in the range of 16 $\sim$ 75% of that specified by manufacturer.

Dynamic Analysis of Fixed Offshore Structures Subjected to Random Waves (불규칙파에 대한 고정해양구조물의 동적해석)

  • Yun, Chung Bang;Choi, Jung Ho;Ryu, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • Two methods for the dynamic analysis of fixed offshore structures subjected to random waves are studied. They are the frequency domain method using the equivalent linearization of the nonlinear drag force, and the time domain method utilizing the Monte Carlo simulation technique for time series of random wave particle velocities and accelerations. Example analyses are carried out for two structures with different structural characteristics and for various wave conditions. A comparison has been made between the results obtained by two methods.

  • PDF

Dynamic Behavior of the Breasting Dolphin Caused by Wave Power (파력에 의한 돌핀의 거동 특성)

  • Cho, Won Chul;Yoon, Gyeong Seug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.281-287
    • /
    • 2009
  • In this study, the behavior of breasting dolphin caused by the maximum wave height in the coastal area of Incheon has been investigated. The dynamic deflection, shear stress and moment of pile are analyzed using the coefficient of horizontal subgrade reaction resulted from loading tests for different DWT (Dead Weight Tonnage). The dynamic characteristics of pile in accumulated and dredged soils show almost the same pattern. It is shown that the resistance of dolphin to external load increases as the diameter of pile increases. The bettered pile dolphin is more than 10 times stable than the vertical pile type based on the study of dynamic characteristics of dolphin.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.