• Title/Summary/Keyword: 동적 시간이력 해석

Search Result 150, Processing Time 0.021 seconds

The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method (응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석)

  • 이동근;김태호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.169-178
    • /
    • 1998
  • In general, the response spectrum analysis method is widely used for seismic analysis of building structures, and the time history analysis is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the response spectrum analysis method, the time history method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the response spectrum method. At first, Response spectrum and time history analysis for some earthquake excitations are carried out, and the accuracy of maximum displacements obtained from response spectrum analysis is investigated. Secondly, the process for the response spectrum analysis in excitation is calculated, and the maximum modal responses are combined by CQC method. Finally, results of the proposed method are compared with those of the time history analysis.

  • PDF

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

Dynamic Response Analysis of Superstructures on Very Large Floating Structures (초대형 부유식 구조물의 상부구조체에 대한 동적응답해석)

  • Kwak, Myung-Ha;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.441-447
    • /
    • 2002
  • The importance of utilization of ocean space is increased due to high population and narrow land space. The development of a new technology for future use of ocean space, such as a design technology of Very Large Floating Structures(VLFS) is needed. This paper introduces the rime history analysis of superstructures on very large floating structures and proposes the estimation method of time displacement history considering wave loads. The dynamic responses of superstructure according to variation of period and amplitude are analysed using an example frame structure and the dynamic structural safety of VLFS pilot superstructure is evaluated.

노스리지 지진하의 강 뼈대 구조물에 대한 사례 연구

  • 김기동
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.46-57
    • /
    • 1998
  • 노스리지 지진하의 모멘트 저항 강 뼈대 구조물에 대한 사례연구결과를 요약하면 다음과 같다. 1) 탄성과 비탄성 동적해석 방법의 신뢰도가 구조물의 동적거동의 모형화에 크게 영향을 받는다는 것을 알 수 있었고 구조물의 동적거동의 모형화를 위한 보다 개선된 지침과 기준의 필요성이 부각되었다. 2) 비탄성 횡방향 정적해석은 6층높이의 건물까지는 비탄성동적해석과 유사한 결과를 보였으나 10층 이상의 건물에서는 고차 모드 효과를 고려하지 못하여 상당히 상이한 결과를 나타냈다. 3) 응답스펙트럼 해석은 노스리지 지진하에서 탄성 시간이력 해석에 비하여 100%까지 상이한 결과를 보였다. 특정지진에 대한 구조물거동의 상세조사시 응답 스펙트럼 해석 대신 시간이력해석을 수행하는 것이 바람직하다. 4) 탄성 부재력의 저항능력 비와 소성 회전각 등의 거동지수 등은 현존하는 건물의 연결부 손상을 검사하기 위한 지침을 마련하는데 도움을 줄 수 있지만 특정 연결부를 검사에서 배제시키는 유일한 근거로 사용되어서는 안될 것으로 판단된다.

  • PDF

Application of Response Spectrum Method for Analysis of a Floor System Subjected to Dynamic Loads on Multiple Locations (복수 절점에 가진되는 건물 바닥판의 해석을 위한 응답스펙트럼 해석법의 응용)

  • 김태호;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.21-32
    • /
    • 2002
  • In general, the response spectrum analysis method (R.S.A) is widely used for seismic analysis of building structure. But, it is not common to apply R.S.A for the analysis of structural vibration caused by dynamic loads of equipments, machines and moving leads, etc. The time history analysis method(T.H.A) for the vibration analysis, compared with R.S.A, is very complex, difficult and time consuming. So the application of R.S.A, that is convenient to calculate maximum responses for structural vibration, is proposed in this study. At first, the procedure for the application of the R.S.A to calculate of the maximum vibration response induced by dynamic load applied on the single point is described. And then, the process, which can save the time and the memory for calculation of the maximum vibration response induced by dynamic loads on the multi-point is proposed, and the maximum structural response caused by moving loads are obtained. Lastly, the accuracy of the proposed method is verified by comparing the results of R.S.A to T.H.A for some example models.

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis (명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.349-359
    • /
    • 2001
  • An enhanced four-node plate element, which has been developed for explicit dynamic analysis of plate, is described in this paper. Reissner-Mind1in(RM) assumptions are adopted to consider transverse shear deformation effects in the present plate element. RM plate element produces a shear locking phenomena in thin plate so that the substitute natural strains based on assumed strain method are explicitly derived. The present plate element is applied into the explicit transient algorithm and the mass matrix of plate is formulated by using special lumping method proposed by Hinton et al. The performance of the element is verified with numerical examples.

  • PDF

Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings (지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구)

  • Shin, Ji-Wook;Lee, Ki-Hak;Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • This paper presents dynamic behavior of double-layer barrelvault systems subjected to earthquake loadings. In order to investigate different seismic behaviors according to Time History Analysis (THA), six open angles were employed and different fundamental frequencies corresponding to each open angle were considered. A total of 24 double-layer structures were developed by using Midas Gen., which is a computer analysis program and then THA with three different earthquakes with 5% damping ratio was performed. This study investigated the characteristics of the dynamic response for X-, Y- and Z- directions, both subjected to the horizontal earthquake (H) and applied to the vertical earthquake (V) with respect to the each variable, which assumed to be important aspects for spatial structure. In order to examine the dynamic characteristics, the ratio of acceleration in specific nodes of barrelvaults was evaluated at the time with maximum response. The main purpose of this study is to obtain equations of the equivalent earthquake loading with respect to the barrelvault systems.

  • PDF

구조물의 비선형 거동해석을 위한 지진시간이력의 기준선 조정

  • 신태명;이규만;김인용
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.241-246
    • /
    • 1996
  • 지진시 미끄럼 등과 같이 전형적인 비선형거동을 하는 구조물에 대한 동적해석을 수행하는 경우 먼저 입력지진의 가속도 시간이력에 대한 기준선 조정이 필요할 때가 있다. 인공적으로 작성된 지진기록의 경우 때로 가속도 시간이력을 적분하여 속도 및 변위 시간이력을 얻었을 때 증가하는 형태로 나타나 이로 인하여 비선형응답이 비정상적으로 커질 수 있기 때문이다. 본 논문에서는 바닥이 마찰거동을 하는 구조물에 대해 간단히 모델하여 이러한 예를 보였으며 또한 주로 사용되는 기준선 조정방법들의 응답영향을 비교하였다. 그 결과 입력지진의 기준선 조정을 하지 않는 것이 항상 보수적인 결과만을 보여 주지 않는다는 점과 기준선 조정의 방범에도 표준화가 필요하다는 점을 파악할 수 있었다.

  • PDF

Response Spectrum Analysis of Floor Structure Subjected to Group Dynamic Loads (복수의 동적하중을 받는 바닥판 구조물의 응답스펙트럼 해석)

  • Kim, Tae-Ho;Han, Duck-Jeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In general, the response spectrum analysis(RSA) method is wifely used for seismic analysis of building structures, and the time history analysis(THA) is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the RSA method, the THA method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the RSA method. At first, the process for the RSA in excitation is proposed, and the maximum modal responses are combined by CQC and SRSS methods. Also, the responses obtained by the two modal combination methods are compared to the responses by the THA. And the correlation coefficients for human activities is proposed, and the RSA responses obtained by used to the correlation coefficients are calculated. Finally, results of the proposed method are compared with those of the time history analysis and correlation coefficients should be considered for the RSA of floor structure subjected to group dynamic loads.

  • PDF