• Title/Summary/Keyword: 동적 강성

Search Result 597, Processing Time 0.025 seconds

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

A Study on the Post-Buckling Analysis of Spatial Structures Using Dynamic Relaxation Method (동적이완법을 이용한 후좌굴 해석법의 Hybrid 구조물의 적용성 평가)

  • Lee, Kyong-Soo;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.58-65
    • /
    • 2006
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

The chatter vibration in metal cutting using the low stiffness tool (저강성 공구를 이용한 절삭에서의 채터 진동)

  • 김정석;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.424-432
    • /
    • 1989
  • A mathematical model is developed for determination of the dynamic cutting force from static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The proposed model is verified by the chatter stability charts. A good agreement was shown between the stability limits predicted by the theory and the critical width of cut determined by experiments. The static cutting coefficient dominates high speed chatter stability, while the dynamic cutting coefficient dominates low speed chatter stability.

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비선형 동적 해석을 위한 성치 측정에 의한 예측 접근법)

  • 김교신;전경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Current seismic design philosophy for reinforced concrete (RC) structures on energy dissipation through large inelastic defomations. A nonlinear dynamic analysis which is used to represent this behavior is time consuming and expensive, particularly if the computations have to be repeated many times. Therefore, the selection of an efficient yet accurate alogorithm becomes important. The main objective of the present study is to propose a new technique herein called the prediction approach with siffness measure (PASM) method in the convetional direct integration methods, the triangular decomposition of matrix is required for solving equations of motion in every time step or every iteration. The PASM method uses a limited number of predetermined decomposed effective matrices obtained from stiffness states of the structure when it is deformed into the nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

  • PDF

Dynamic Analysis of 3-D Rigid Foundations by Boundary Elements (강성기초의 3차원 동적 경계요소해석)

  • Lee, Chan Woo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.53-65
    • /
    • 1993
  • In this work the dynamic response of 3-D arbitrarily shaped rigid massless foundation is numerically obtained using boundary element under non-relaxed boundary condition. The problem is formulated in time domain by the boundary element method. The fundamental solutions used in this work are the Stokes solutions of the three dimensional elastodynamics. This method has advantages over frequency domain techniques in that it provides in a natural and direct way the time history of the response and forms the basis for elct:ension to nonlinear problems. This work is verified and can be used for practical purpose.

  • PDF

Earth Pressure Acting on Rigid Retaining Wall due to the Dynamic Load (동하중에 의한 강성벽체에 작용하는 토압)

  • 박종덕;전용백
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.157-168
    • /
    • 2000
  • 토류구조물의 안정문제로는 장단기적으로 정적인 경우와 동적인 경우, 그리고 지반의 동적 거동특성, 흙의 강도저하 등을 미리 파악하여 기술적인 대처를 할 필요가 있을 것이다. 본 연구에서는 실내 모형 실험을 통하여 구조물의 배면에 토성이 다른 일반모래, 표준모래, 점성토를 뒷채움하여 다짐없이 강사만 하고, 룰러다짐, 진동다짐을 하여 토피의 수평 진동거리를 길게, 짧게 그리고 중간으로 하여 강성벽체에 작요?는 수평토압에 대한 정적, 동적 특성을 규명하는 것이다. 모형 실험장치로는 실험대, 토조, 토압측정장치, 진동하중 발생장치, 진동측정장치, 강사기, 롤러 등을 설치하여 거리에 따른 병진운동으로 가속도와 수평토압, 수평토압계수, 전체토압, 토압의 작용점, 지진토압증분 증을 구하여, 실험결과와 기존 이론결과, 그리고 유한요소 해석결과와 비교 고찰하였다.

  • PDF

A Study on the Torque Control Method of a Hydraulic Actuation System for Measuring the Dynamic Stiffness of Missile Fin Actuators (유도무기용 날개구동기의 동적 강성 측정을 위한 유압 구동장치의 토크제어 기법에 관한 연구)

  • Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • This paper presents a torque control method of a hydraulic actuation system for measuring the dynamic stiffness of missile fin actuators. We propose a new control technique called Dual Dynamic Torque Feedback Control(DDTFC), which improves the stability of the torque control system and enables fast tracking of torque command. The developed control scheme is derived from the physical understanding based on mathematical modelling and analysis. The dynamics of hydraulic torque control servo-system is unravelled via physics-based modelling and nonparametric system identification. In order to verify the effectiveness of the method, the experiment is carried out with a test equipment for measuring the dynamic stiffness. The experiment and simulation results show that DDTFC gives stability improvement.