• Title/Summary/Keyword: 동적변형특성

Search Result 360, Processing Time 0.029 seconds

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Shaking table test for analysis of seismic performance of cut and cover tunnel using EPS block as backfill material (개착식 터널의 뒤채움재로 EPS블럭의 내진 성능 평가를 위한 진동대 시험)

  • Kim, Nag-Young;Lee, Yong-Jun;Lee, Seung-Ho;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.333-342
    • /
    • 2002
  • World widely, the occurrences of earthquakes have been increased recently. Speculating from cases of earthquakes in the world, it is reported that damages have been made underground structures like cut-and-cover tunnels, especially on the upper of tunnel with a shallow depth and the backfilled area adjacently by earthquakes. Earthquakes have a tendency to increase recently in Korea but it is deficient in seismic design criteria. In this study, Shaking table test on both soil and EPS blocks was performed to analyze the efficiency of the seismic performance of the cut-and-cover tunnels according to characteristic of backfill materials and embanking material. It turned out to be effective in improving the seismic performance according to analysis of strain and bending stress of tunnel by earthquakes.

  • PDF

Synthesis and Application of Reactive Polymer Modifiers for Asphalt: 2. Application (아스팔트용 반응성 고분자 개질제 합성 및 적용: 2. 적용)

  • Hwang, Ki-Seob;Lee, Jong-Cheol;Jang, Suck-Soo;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.538-542
    • /
    • 2007
  • This study is on the performance analysis of modified asphalts which were prepared by mixing the asphalt with polymer modifiers of varying compositions which were synthesized by the emulsion polymerization method. Thermal properties of mired asphalt were investigated by DSC (differential scanning calorimetry), and dispersion of modifiers in asphalt was investigated by the fluorescence microscope. Dynamic stability and permanent deformation velocities of mixed asphalt were investigated by wheel tracking measurements. Modifier 6 showed the best results in both penetration test and wheel tracking measurement among investigated modifiers, which supports MMA(methyl methacrylate) moiety in modifiers plays better contribution for the enhancement of asphalt performance than styrene moiety does.

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

A Study on the Equivalent Fatigue Damage of the Steel Railway Bridge (강철도교(鋼鐵道橋)의 등가피로피해(等價疲勞被害)에 관한 연구(硏究))

  • Chang, Dong Il;Lee, Jong Deuk;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.11-21
    • /
    • 1982
  • The dynamic strain-time(${\varepsilon}$-t) curves of the fatal members in three existing steel railway bridges was measured during the selected trains was passing, and was regulated statistically. By the results of these the equivalent fatigue damages of the selected members was calculated in comparison with the allowable stresses, and was examined. From these the base available in evaluating the stability and the lifeproof of the steel railway bridge was obtained. In addition to this, the following several properties which could be used availably in designing the steel railway bridges. It was conformed that the fatigue damages was different each other even in the same members, if the unit weight of the trains was same but the weights and the dispositions of the wheels of the trains was different each other. It was indicated that the fatigue damages was larger in the members which had the defects in components of the materials, the flaws being made during producing and constructing, and the corrosions, etc. It was considered that more a vailable data could be obtained, if the same studies were continued under the spans and the types of the bridges being changed continuously.

  • PDF

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.

A Study on the Optimization of C++ Program Using the Class Hierarchies Slicing (클래스 계층구조 슬라이싱을 이용한 C++프로그램 최적화에 관한 연구)

  • Kim, Un-Yong;Jeong, Gye-Dong;Choe, Yeong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1542-1555
    • /
    • 1999
  • This paper proposes an algorithm for class hierarchies which can optimize member data and member function. This algorithm considers single/multiple inheritance, static/dynamic binding, overloading/overriding, pure virtual/virtual function, and constructor on the hierarchy of C++ class. We need to eliminate unused function that possesses many component element, because the program uses a limited of function in class hierarchies. Previous works on slicing mainly focused on selecting output data and including the related program statement. It was consists of structured programming language and also centralized on error detection, maintenance, and flexible testing. In this paper, we extend to the object-oriented language, makes a linked-table for objects to raise the efficiency of information management, and proposes necessary algorithm for optimizing system Through this process, we can obtain the simplification of program code and the progress of system performance by eliminating unused member data and member function.

  • PDF