• 제목/요약/키워드: 동작 분류

검색결과 510건 처리시간 0.025초

RFID Tag 기술

  • 변상기
    • 한국전자파학회지:전자파기술
    • /
    • 제15권2호
    • /
    • pp.32-43
    • /
    • 2004
  • RFID 시스템에서 태그는 리더와 전자기 에너지 교환에 의해 동작을 하며 배터리를 사용하는 active 형 태그와 배터리를 사용하지 않는 passive형 태그로 크게 구분된다. 또한 태그는 자체 회로구조에 의해 harmonic 태그, anharmonic 태그, sequenced amplifier 태그로 나뉜다. Passive 태그에서는 리더의 반송파 backscatter 방식을 이용하여 동작을 하며 active 태그는 자체 발진회로에 의해 태그정보를 송신한다. 태그의 변조방식으로 PSK, FSK, ASK 등을 사용하며 변조방법에 따라 회로 구성과 프로토콜 설계가 달라진다. 또한 리더의 전파 신호를 정류하기 위하여 렉테나(rectenna)가 필요하다. 본 논문에서는 태그의 분류, 동작, 구조 등에 관한 일반적인 내용을 기술하였다. 특히 UHF 대역 이상의 태그 기술 최근 추세가 안테나 부분을 제외하고 CMOS one chip화 하는 수준으로서 900 MHz UHF 대역, 2.45 GHz RFID 칩이 상용화 되어 있다. 칩의 내부구조와 태그의 변조방식에 의거한 동작에 관한 개괄적인 내용을 서술하였다.

국부기저영상을 이용한 수화영상 인식 (Sign Language Images Recognition Using Local Basis Images)

  • 조용현;홍성준;이화주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.615-618
    • /
    • 2008
  • 본 논문에서는 각 개인의 동작영상에 대한 국부고유공간에 바탕을 둔 기저영상을 이용한 효율적인 수화영상 인식 기법을 제안하였다. 여기서 국부고유공간의 추출은 주요성분분석을 이용한 것으로 동작영상의 국소특징을 더욱 더 잘 반영하기 위함이고, 기저영상의 추출은 독립성분분석을 이용한 것으로 수화영상 내에 포함된 고차원의 독립적인 특징들을 반영하여 보다 개선된 인식성능을 얻기 위함이다. 제안된 기법을 240*215 픽셀의 80(1명*5동물*16동작)개 동물을 표현하는 수화동작을 대상으로 Euclidean의 분류척도를 이용하여 실험한 결과, 단순 국부고유공간을 이용한 방법에 비해 우수한 인식성능이 있음을 확인하였다.

근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구 (Pattern Classification Algorithm for Wrist Movements based on EMG)

  • 최항적;김유현;심현민;윤광섭;이상민
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.69-74
    • /
    • 2013
  • 본 연구에서는 손목 움직임의 추정을 위한 근전도 신호 기반 동작 분류 알고리즘을 제안한다. 근전도의 특징점을 추출하기 위하여 절대차분표준편차(DASDV)과 제곱평균제곱근(RMS)을 사용하며, 측정 된 근전도 신호를 이용하여 동작 마다 30개의 특징점(RMS, DASDV)을 추출한다. 근전도 신호를 특정한 패턴으로 나타내어 적용시키기 위하여 평균값을 기준으로 집단을 두 부분으로 나누고, 패턴분류 방법인 k-NN으로 패턴을 학습시킨 후, 집단을 나누지 않은 방법을 사용한 기존의 연구와 비교하여 제안한 알고리즘의 성능을 검증한다. 실험결과 제안한 알고리즘은 92.59%의 인식률을 보였으며, 이전 연구 결과보다 0.84% 포인트의 성능 개선을 보였다.

  • PDF

신경망을 이용한 동작분석과 원격 응급상황 검출 시스템 (Human Behavior Analysis and Remote Emergency Detection System Using the Neural Network)

  • 이동규;이기정;임혁규;황보택근
    • 한국콘텐츠학회논문지
    • /
    • 제6권9호
    • /
    • pp.50-59
    • /
    • 2006
  • 본 논문에서는 신경망을 이용한 동작분석 기법을 통한 자동화 영상감시시스템의 구현과 응급상황 검출에의 응용을 제안한다. 카메라로부터 입력된 영상은 통계적 배경 모델에 의한 배경 감산법에 의해 객체영역이 분리되고, 분리된 객체영역의 특징을 표현할 수 있는 특징벡터의 형태로 변형된다. 특징벡터를 이용한 동작분석을 위해 신경망을 사용하였고 간단한 연산에 의해 동작을 구분할 수 있도록 하였다. 본 논문에서는 실험을 위해 stand, faint, squat 등 3가지의 동작 상태를 분류할 수 있도록 하였고, 실험 결과 응급상황을 검출하기 위한 알고리즘으로 유용함을 보였다.

  • PDF

제스처 공간에서 클러스터링 방법을 이용한 제스처 동작 평가 (Gesture Motion Estimate Using Clustering Method on Gesture Space)

  • 이용재;이칠우
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.173-176
    • /
    • 2001
  • 본 논문에서는 저차원 제스처 특징 공간에서 연속적인 인간의 제스처 영상을 계층적 클러스터링을 이용하여 인식할 수 있는 방법에 대해 소개한다. 일반적으로 제스처 공간에서 모델 패턴들과 매칭하기 위해서는 모든 모델 영상과 연속적인 입력영상들간의 거리평가로 인식을 수행하게 된다. 여기서 제안한 방법은 모델영상들을 연속성을 가진 클러스터로 분류하여 입력 영상과 계층적으로 비교할 수 있으며 동작에 관한 구체적 정보를 얻을 수 있다. 이 방법은 매칭 속도와 인식률을 개선하고 인식결과를 학습에 이용할 수 있는 장점이 있다.

  • PDF

인공지능 기법으로 스마트 플러그를 이용한 제품 자동분류에 관한 연구 (The research of Automatic Classification of Products Using Smart Plug by Artificial Intelligence Technique)

  • 손창우;이상배
    • 한국정보통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.842-848
    • /
    • 2018
  • 스마트 플러그는 가정집에서 콘센트와 제품 간 중간에 연결하는 장치로써, 전원 On/Off 제어 기능과 전력 측정 기능으로 에너지 절약을 유도하고 외부에 정보를 전송할 수 있는 IoT 기기를 말한다. 여기에 사람의 사고방식을 컴퓨터에 학습 시키는 인공지능 기술의 딥러닝을 스마트 플러그에 탑재하여, 입력 교류 전류 패턴을 이용하여 제품이 동작만 하면 어떤 제품인지 자동으로 분류하고 세탁기의 동작 상태를 자동으로 판단하는 시험을 하였다. 본 연구를 통해 제품이 IoT 기능이 안 되더라도 스마트 플러그 연결만으로도 제품의 종류와 동작 상태를 분류하므로, 한 가정의 생활패턴과 에너지 절감의 새로운 패러다임을 그릴 수 있을 것이다.

선택적 운동 조절 척도와 기능적 수행도 평가 간의 상관: 경직형 뇌성마비 아동을 대상으로 (Correlation Between Selective Motor Control Test and Functional Performance Evaluation in Children With Spastic Cerebral Palsy)

  • 박은영
    • 한국콘텐츠학회논문지
    • /
    • 제12권7호
    • /
    • pp.232-239
    • /
    • 2012
  • 이 연구는 경직형 뇌성마비 아동의 운동 손상를 측정하는 도구로서 선택적 운동조절능력 척도에 대한 기초 자료를 제공하고 선택적 운동조절능력과 대동작 기능 분류 체계, 대동작 기능 평가 결과, 그리고 일상 생활동작 평가 결과 사이의 상관성을 알아보는데 그 목적이 있다. 이를 위해 68명의 경직형 뇌성마비 아동을 대상으로 선택적 운동조절능력, 대동작 기능 분류 체계 평가, 대동작 기능 평가, 그리고 일상생활동작 평가를 실시하고 상관을 알아보았다. 그 결과 선택적 운동 조절 척도 등급은 대동작 기능 분류 체계 평가(r = -.485)와 대동작 기능 평가(r = .482)와 유의한 상관을 보였다(p<.05). 하지만 일상생활동작과는 유의한 상관을 보이지 않았다(p>.05). 이는 이 척도가 경직형 뇌성마비 아동의 운동 손상 중 선택적 운동조절능력을 평가하는 평가도구로써 유용하게 사용될 수 있음을 시사한다.

FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현 (Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor)

  • 심윤성;송승준;장선영;정윤호
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.364-372
    • /
    • 2022
  • 본 논문에서는 FMCW(frequency modulated continuous wave) 레이다 센서를 활용한 사람과 사물을 분류하는 시스템 설계 및 구현 결과를 제시한다. 해당 시스템은 다중 객체 탐지를 위한 레이다 센서 신호처리 과정과 객체를 사람 및 사물로 분류하는 딥러닝 과정을 수행한다. 딥러닝의 경우 높은 연산량과 많은 양의 메모리를 요구하기 때문에 경량화가 필수적이다. 따라서 CNN (convolution neural network) 연산을 이진화하여 동작하는 BNN (binary neural network) 구조를 적용하였으며, 실시간 동작을 위해 하드웨어 가속기를 설계하고 FPGA 보드 상에서 구현 및 검증하였다. 성능 평가 및 검증 결과 90.5%의 다중 객체 구분 정확도, CNN 대비 96.87% 감소된 메모리 구현이 가능하며, 총 수행 시간은 5ms로 실시간 동작이 가능함을 확인하였다.

마우스 동작 기록 기반 비정상 게임 이용자 감지를 위한 단일 클래스 분류 기법 (One-Class Classification based on Recorded Mouse Activity for Detecting Abnormal Game Users)

  • 송민준;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.39-42
    • /
    • 2023
  • 최근 온라인 게임 산업이 급속도로 확장됨과 더불어 Gamebot과 같은 비정상적인 프로그램으로 인한 게임 서비스 피해사례가 급격하게 증가하고 있다. 특히, 대표적인 게임 장르 중 하나인 FPS(First-Person Shooter)에서 Aimbot의 사용은 정상적인 이용자들에게 재미 요소를 잃어버리게 하고 상대적 박탈감을 일으켜 게임의 수명을 줄이는 원인이 된다. 비정상 게임 이용자의 근절을 위해서 메모리 변조 및 불법 변조 프로그램 접근 차단 기법과 불법 프로그램 사용의 패턴 모니터링과 같은 기법들이 제안되었지만, 우회 프로그램 및 새로운 패턴을 이용한 비정상적인 프로그램의 개발에는 취약하다는 단점이 있다. 따라서, 본 논문에서는 정상적인 게임 이용자의 패턴만 학습함으로써 비정상 이용자 검출을 가능하게 하는 딥러닝 기반 단일 클래스 분류 기법을 제안하며, 가장 빈번하게 발생하는 치트(Cheat) 유형인 FPS 게임 내 Aimbot 사용 감지에 초점을 두었다. 제안된 비정상 게임 이용자 감지 시스템은 정상적인 사용자의 마우스 좌표를 데카르트 좌표계(Cartesian coordinates)와 극좌표계(Polar coordinates)의 형태로 패턴을 추출하는 과정과 정상적인 마우스 동작 기록으로 부터 학습된 LSTM 기반 Autoencoder의 복원 에러에 따른 검출 과정으로 구성된다. 실험에서 제안된 모델은 FPS 게임 내 마우스 동작을 기록한 공개 데이터셋인 CSGO 게임 데이터셋으로 부터 학습되었으며, 학습된 모델의 테스트 결과는 데카르트 좌표계로부터 훈련된 제안 모델이 비정상 게임 이용자를 분류하는데 적합함을 입증하였다.

  • PDF

구조적응 자기구성 지도를 이용한 인간 행동의 성별 분류 (Gender Classification of Human Behaviors Using Structure Adaptive Self-organizing Map)

  • 류중원;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.298-300
    • /
    • 2001
  • 본 논문에서는 구조적응 자기구성 지도 모델을 사용하여 인간 행동의 성별을 분류하는 인식기를 제안하였다. 26명의 사람이 '화난 상태' 혹은 '보통 상태'의 두가지 정서 하에서 '문 두드리기', '손 흔들기', '물건 들어올리기'의 세가지 동작을 수행하는 동안, 행위자 관절점의 속도나 위치 정보로부터 성별을 분류하였다. 또한 SASOM의 성능 비교 분석을 위하여 전통적인 SOM, 다층 퍼셉트론과 거의 두 가지 결합 모델, SASOM와 의사결정트리 결합 모델, 단일 의사 결정트리, $textsc{k}$-최근접 이웃 등의 인식기를 구현하여 성능을 비교분석 하였다. 실험 결과 SASOM 분류기가 가장 높은 이식률을 보였으며 분류기로서 유용함을 알 수 있었다.

  • PDF