최근 감정인식 기술은 다양한 IoT 센서 디바이스의 등장으로 단일 소스기반의 감정인식 기술 연구에서 멀티모달 센서기반 감정인식 연구로 변화하고 있으며, 특히 오디오와 영상을 이용한 감정인식 기술의 연구가 활발하게 진행되는 있다. 기존의 오디오 및 영상기반 감정신 연구는 두 개의 센서 테이터를 동시에 입력 저장한 오픈 데이터베이스를 활용하여 다른 이벤트 처리 없이 각각의 데이터에서 특징을 추출하고 하나의 분류기를 통해 감정을 인식한다. 이러한 기법은 사람이 말하지 않는 구간, 얼굴이 보이지 않는 구간의 이벤트 정보처리에 대한 대처가 떨어지고 두 개의 정보를 종합하여 하나의 감정도 도출하는 디시전 레벨의 퓨저닝 연구가 부족하다. 본 논문에서는 이러한 문제를 해결하기 위해 오디오 및 영상에 내포되어 있는 이벤트 정보를 추출하고 오디오 및 영상 기반의 분리된 인지모듈을 통해 감정들을 인식하며, 도출된 감정들을 시간단위로 통합하여 디시전 퓨전하는 실시간 오디오 및 영상기반의 감정인식 프레임워크를 제안한다.
본 논문에서는 인간과 컴퓨터의 인터페이스를 좀더 자연스럽고 쉬운 형태의 능동적인 휴먼 인터페이스로 구현하기 위해 정지영상 및 동영상에서의 감정인식기법을 제안하고자 한다. 제안된 얼굴의 감정인식 기법은 Hidden Markov Model(HMM), 주성분분석기법(PCA)와 웨이블렛 변환을 기반으로 구성하였다. 얼굴의 감정인식을 위하여 심리학자인 Ekman과 Friesen의 연구에 의해 문화에 영향을 받지 않고 공통으로 인식하는 6개의 기본 감정인 기쁨, 슬픔, 화남, 놀람, 공포, 혐오를 바탕으로 실험하였다. 감정인식에서 입력영상은 이산 웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 영상에서 PCA 특징벡터를 추출한 후 이를 사용하여 HMM의 모델을 생성한다. 인식단계에서는 정지영상에서의 인식값과 동영상에서의 인식값을 정규화 과정을 통하여 상호보완 함으로써 인식률을 높일 수 있었다.
최근 비대면 상담의 수요가 급증하면서, 텍스트뿐만 아니라 음성, 얼굴 표정 등 다양한 모달리티를 결합한 감정 인식 기술의 필요성이 강조되고 있다. 본 논문에서는 FER-2013, CK+, AFEW와 같은 기존 데이터셋의 외국인 중심, 감정 라벨 불균형 등의 문제를 해결하기 위해 한국어 동영상 데이터를 활용하고, 텍스트 모달리티를 기반으로 이미지 모달리티의 장점을 결합하여 동영상에서 멀티모달 감정 인식의 성능을 향상시키는 방법을 제안하고자 한다. 적은 데이터 학습 데이터로 인한 한계를 극복하기 위해 사전학습 모델을 활용하였는데, 텍스트는 GPT-4 기반의 LLM 모델을 적용하고, 얼굴 표정 이미지는 VGG-19 아키텍처 기반의 사전학습 모델을 파인튜닝하여 적용하였다. 사전 학습을 활용하여 추출된 각 모달리티별 감정 결과를 결합하여 대표 감정을 추출하는 방법은 텍스트에서 추출한 감정 정보와 동영상에서의 얼굴 표정 변화를 결합하는 방법으로 텍스트와 이미지 간 감정 불일치 상황에서 임곗값을 적용하여 텍스트 기반 감정을 신뢰할 수 있을 때 우선 선택하는 전략과 프레임별 감정 분포 정보를 활용하여 대표 감정을 조정하는 전략을 적용하여 기존 프레임별 감정 평균값을 사용하는 방법에 비해 F1-Score를 기준으로 19%의 성능을 향상시킬 수 있었다.
본 연구에서는 미디어 형식과 위험 메시지 구성에 따라 방사선 조사식품에 대한 즉각적이고 감정적인 반응과 숙고적 행동의도가 어떻게 형성되는가를 살펴보고자 했다. 이를 위해 $3{\times}2$ 피험자간 실험을 통해 방사선 조사식품과 관련된 문자, 음성, 동영상 형태의 정보를 긍정 혹은 부정적으로 서술하여 피험자에게 제공했다. 이후 암묵적 측정법의 일환인 수정된 EAST 방법을 이용하여 피험자의 감정적 위험인식을 측정하고 설문을 이용해 방사선 조사식품의 구매의도를 측정했다. 연구결과는 전반적으로 미디어 형식과 메시지 구성이 피험자의 감정적 위험인식과 구매의도에 유의미한 영향을 주는 것으로 나타났다. 특히 미디어 형식의 효과는 메시지 구성간의 상호작용 효과가 유의미하였다. 즉 문자와 동영상 정보의 경우 긍정적 메시지가 위험인식을 낮추고 구매의도를 높이지만 부정적 메시지는 반대의 결과를 보였다. 그러나 음성 조건에서는 긍정적 정보와 부정적 정보가 감정적 위험인식과 구매의도에 차별적인 영향을 주지 못했다. 이러한 결과는 같은 정보라도 어떠한 미디어를 통해 전달되는가에 따라 위험인식이 다르게 형성될 수 있으며 이 때 메시지의 내용구성에 따라 미디어 형식의 효과는 다르게 나타날 수 있다는 것을 시사한다.
최근 딥 러닝의 급격한 발전과 함께 얼굴표정인식 기술이 상당한 진보를 이루었다. 그러나 기존 얼굴표정인식 기법들은 제한된 환경에서 취득한 인위적인 동영상에 대해 주로 개발되었기 때문에 실제 wild 한 환경에서 취득한 동영상에 대해 강인하게 동작하지 않을 수 있다. 이런 문제를 해결하기 위해 3D CNN, 2D CNN 그리고 RNN 의 새로운 결합으로 이루어진 Deep neural network 구조를 제안한다. 제안 네트워크는 주어진 동영상으로부터 두 가지 서로 다른 CNN 을 통해서 영상 내 공간적 정보뿐만 아니라 시간적 정보를 담고 있는 특징 벡터를 추출할 수 있다. 그 다음, RNN 이 시간 도메인 학습을 수행할 뿐만 아니라 상기 네트워크들에서 추출된 특징 벡터들을 융합한다. 상기 기술들이 유기적으로 연동하는 제안된 네트워크는 대표적인 wild 한 공인 데이터세트인 AFEW 로 실험한 결과 49.6%의 정확도로 종래 기법 대비 향상된 성능을 보인다.
멀티모달 감정인식을 통해 사람의 감정을 정확하게 분류하고, 사람의 감정에 어울리는 음악을 매칭하는 시스템을 설계한다. 멀티모달 감정 인식 방법으로는 IEMOCAP(Interactive Emotional Dyadic Motion Capture) 데이터셋을 활용해 감정을 분류하고, 분류된 감정의 분위기에 맞는 음악을 매칭시키는 시스템을 구축하고자 한다. 유니모달 대비 멀티모달 감정인식의 정확도를 개선한 시스템을 통해 텍스트, 음성, 표정을 포함하고 있는 동영상의 감성 분위기에 적합한 음악 매칭 시스템을 연구한다.
본 연구에서는 페이스북 이용자들이 업로드, 공유하는 게시물 감정의 내용분석을 수행했다. 페이스북은 최근 사회적인 소통 수단으로 유용하게 사용되고 있는 SNS의 한 종류로서 그 이용자수는 전 세계적으로 늘어나고 있는 추세다. 페이스북에서는 다양한 인간적 감정이 교류되고 있으며 사진, 동영상 등의 여러 콘텐츠 유형이 동원된다는 점에서 페이스북은 단순한 전자 게시판과 다르다. 기존의 연구에 의하면 특정한 미디어에 의해 매개되는 컴퓨터 매개 커뮤니케이션(computer-mediated communication)에서도 시각적 심볼 및 각종 비언어적 단서(non-verbal cues)들을 통해 풍부한 의미 전달을 수행한다. 본 연구에서는 페이스북 게시물 감정의 종류를 구체적으로 탐색 했으며 콘텐츠 타입과 감정 간의 관계를 통해 페이스북 이용자들이 각 유형의 콘텐츠를 어떻게 인식하는지도 분석했다. 자료 수집은 페이스북 게시물을 수집하는 소프트웨어를 개발해 사용했다. 페이스북 이용자 205명의 총 10,308개 게시물을 바탕을 내용 분석을 수행했다. 분석 결과 기쁨 감정의 빈도가 가장 높았다. 콘텐츠 타입에 따라서도 감정 분포의 차이가 확인됐다. 텍스트로만 이루어진 상태 콘텐츠에서는 의문의 감정이 부각됐고, 사진 콘텐츠에서는 사랑의 감정이 두드러졌으며 동영상 콘텐츠에서는 놀람 감정이 비교적 빈번했다. 결과를 바탕으로 학문적 및 실무적 함의를 논했다.
인스턴트 메신저 기반 통신에서 사용자의 감정을 자동으로 인식하고 이를 개인화된 3D 캐릭터 애니메이션으로 표현한다면 기기를 통한 통신에 더 많은 감성을 부여할 수 있고 궁극적으로 의사소통의 효과를 제고할 수 있다. 본 논문은 IPTV (Internet Protocol Television) 환경에서 자동화된 감정 인식 및 표현을 위해 개발된 감성 메신저 시스템에 대해 기술한다. 효율적인 사용자 감정 전달을 위해 텍스트 기반 감정 추측, 3D 렌더링 및 동영상 재생 방식을 동시 지원하는 캐릭터 애니메이션, 스마트폰을 통한 메시지 입력 등을 제안한다. 개발된 감성 메신저의 효과와 성능은 시연 및 실험을 통해 검증하였다.
얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.
본 논문에서는 영상 편집이 익숙하지 않은 시니어 동영상 크리에이터를 위한 동영상 편집 시스템을 설명한다. 영상분석 기술을 이용하여 편집소스 동영상을 분석하여 각종 정보를 제공하고, 자동으로 일부 장면을 삭제한다. 사용자가 다수의 소스 콘텐츠를 입력하였을 때, RNN(Recurrent Neural Network) 기술을 기반으로 샷 단위로 분할하고, 이 중 동영상 편집에서 배제할 부분을 구분한다. 각 샷 별로 중요도를 계산하여 샷 단위로 자동 삭제가 가능하도록 한다. 중요도 계산을 위해서 동영상 초점 정보를 추출하여 활용하는데, 이는 초점이 맞지 않는 영상 또는 흔들린 영상을 배제할 수 있도록 한다. 이후 시스템은 객체 인식을 수행하고, 얼굴이 나온 영상에 대해서 감정, 나이, 성별 등의 정보를 추출하여 사용자에게 제공한다. 사용자는 이런 정보를 활용하여 동영상을 제작한다. 동영상에 자막을 삽입하는 등 동영상을 꾸미기 위한 기능들도 포함되어 있으며, 이런 기능들을 활용할 시, 사용자의 과거 정보를 이용해서 선호 디자인을 쉽게 찾을 수 있도록 앞서 배치하고 있다. 시니어 동영상 크리에이터들이 본 시스템을 통해서 쉽고 빠르게 동영상 콘텐츠를 제작할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.