• Title/Summary/Keyword: 동시분류

Search Result 1,257, Processing Time 0.028 seconds

Multi-channel CNN for Korean Sentiment Analysis (Multi-channel CNN을 이용한 한국어 감성분석)

  • Kim, Min;Byun, Jeunghyun;Lee, Chunghee;Lee, Yeonsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.79-83
    • /
    • 2018
  • 본 논문은 한국어 문장의 형태소, 음절, 자소를 동시에 각자 다른 합성곱층을 통과시켜 문장의 감성을 분류하는 Multi-channel CNN을 제안한다. 오타를 포함하는 구어체 문장들의 경우에 형태소 기반 CNN으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN이 많이 쓰이지만, 본 논문의 Multi-channel CNN 모델은 형태소, 음절, 자소를 동시에 고려하여 더 정확하게 문장의 감성을 분류한다. 본 논문이 제안하는 모델이 형태소 기반 CNN보다 야구 댓글 데이터에서는 약 4.8%, 영화 리뷰 데이터에서는 약 1.3% 더 정확하게 문장의 감성을 분류하였다.

  • PDF

A Study on a Bandwidth Guarantee Method of Subscriber-based DiffServ in Access Networks (액세스 망에서의 DiffServ 기반 가입자 대역 보장 방법 연구)

  • Park, Hea-Sook;Kim, Hae-Sook;Youn, Cheong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.709-716
    • /
    • 2005
  • QoS is an important requirement of the FTTH (Fiber To The Home) subscriber in access network using E-PON (Ethernet Passive Optical Network). In this research, we describe the structure of the access network and propose a bandwidth guarantee scheme for subscriber and service according to the requirements of the subscriber, service and system. This scheme uses two kinds of the classification table, which are called 'service classification table' and 'subscriber classification table.' Using the classification table, we can identify the flow of the subscriber and service. Also, we compute the number of hash table entry to minimize the loss ratio of flows using the M/G/k/k queueing model. Finally, we apply the DRR scheduling through virtual queueing per subscriber instead of the aggregated class.

Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model (주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구)

  • Lee, Kyu-Ho;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.

Context-Aware Fusion with Support Vector Machine (Support Vector Machine을 이용한 문맥 인지형 융합)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.19-26
    • /
    • 2014
  • An ensemble classifier system is a widely-used multi-classifier system, which combines the results from each classifier and, as a result, achieves better classification result than any single classifier used. Several methods have been used to build an ensemble classifier including boosting, which is a cascade method where misclassified examples in previous stage are used to boost the performance in current stage. Boosting is, however, a serial method which does not form a complete feedback loop. In this paper, proposed is context sensitive SVM ensemble (CASE) which adopts SVM, one of the best classifiers in term of classification rate, as a basic classifier and clustering method to divide feature space into contexts. As CASE divides feature space and trains SVMs simultaneously, the result from one component can be applied to the other and CASE achieves better result than boosting. Experimental results prove the usefulness of the proposed method.

Real-time face detection and tracking using hierarchical classifier (계층적 분류기를 이용한 실시간 얼굴 검출 및 추적)

  • Kim, Su-Hui;Yang, Chang-Ho;Lee, Bae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.497-500
    • /
    • 2003
  • 본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.

  • PDF

An Efficient Selection Method for Document Classification Based On Singular Value Decompostion (문서분류에서 SVD(Singular Value Decompotion)기법에 기초한 효율적인 특징 선택방법 연구)

  • Li, Cheng-hua;Byun, Dong Ryul;Park, Soon Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.321-322
    • /
    • 2009
  • 본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.

Analyzing Technology Competitiveness by Country in the Semiconductor Cleaning Equipment Sector Using Quantitative Indices and Co-Classification Network (특허의 정량적 지표와 동시분류 네트워크를 활용한 반도체 세정장비 분야 국가별 기술경쟁력 분석)

  • Yoon, Seok Hoon;Ji, Ilyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.85-93
    • /
    • 2019
  • Despite its matchless position in the global semiconductor industry, Korea has not distinguished itself in the semiconductor equipment sector. Semiconductor cleaning equipment is one of the semiconductor fabrication equipment, and it is expected to be more important along with the advancement of semiconductor fabrication processes. This study attempts to analyze technology competitiveness of major countries in the sector including Korea, and explore specialty sub-areas of the countries. For this purpose, we collected patents of semiconductor cleaning equipment during the last 10 years from the US patent database, and implemented quantitative patent analysis and co-classification network analysis. The result shows that, the US and Japan have been leading the technological progress in this sector, and Korea's competitiveness has lagged behind not only the leading countries but also its competitors and even latecomers. Therefore, intensive R&D and developing technological capabilities are needed for advancing the country's competitiveness in the sector.

Verification of Validity on the Manual Ability Classification System in Children With Spastic Cerebral Palsy (경직형 뇌성마비 아동의 손 기능 분류 체계의 타당도 검증)

  • Park, Eun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.317-324
    • /
    • 2010
  • The purpose of this study was to examine the validity of the Manual Ability Classification System (MACS) by analysing of relation between MACS and Jebsen-Talyor Hand Function Test. The concurrent validity was examined by calculation of correlation between MACS and Jabsen-Talyor Hand Function test and the discriminant validity was examined by measurement of hand function difference according to MACS level. For this, eighty-one children with spastic cerebral palsy were employed in this study. The children were evaluated by using the MACS and Jebsen-Taylor Hand Function Test for their hand function. There were a significant correlation between the MACS and Hand function (r = .870, p < .05). The good correlation between the MACS and subtest of Jabsen-Talyor Hand function (p < .05). The hand function according to the MACS level were different significantly (p < .05). The MACS is valid classification system for assessment of hand function of children with cerebral palsy. The MACS in practice will provide usefulness for assessment of hand function in children with spastic cerebral palsy.

평사 투영 중첩 기법을 이용한 터널 암반 분류: TMR-net

  • 윤운상;임병렬;김정환
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.231-245
    • /
    • 2001
  • 경험적 암반 분류법과 운동학적 해석을 동시에 통합하여 사용할 수 있다면, 터널의 암반 상태를 분류하고 예측하는데 매우 유용할 것이다. TMR-net 분석 기법은 RMR 시스템의 평가 기준에 기초한 절리 방향 평가 기준을 설정하고, 이를 극 투영망 상의 평점 기준을 가진 활동 범위로 표현한 평사투영 중첩기법이다. 터널의 설계 및 시공 단계에 적용된 TMR-net 분석은 절리 방향의 영향과 관련된 효과적인 결과를 제공할 수 있었다.

  • PDF

Analytical Study of Fuzzy Clustering Technique for Automatic Term Classification (용어 자동분류를 위한 퍼지 클러스터링 기법 분석)

  • 한승희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.95-103
    • /
    • 2003
  • 목차 및 권말색인과 같은 인쇄형태의 정보내용에 대한 구조화된 접근방식에서 착안하여 전자 문서의 내용에 대한 새로운 형태의 접근방식을 개발할 수 있는데, 이를 위한 방안으로 용어 자동분류 기법이 있다. 본 연구에서는 용어의 의미모호성 문제를 해결하는 동시에 용어간 계층관계 표현이 가능한 자동분류 기법으로 퍼지 클러스터링 기법을 제안하고, 대표적인 퍼지 클러스터링 알고리즘인 퍼지 c-means 기법에 대해 분석하고자 한다.

  • PDF