Kim, Min;Byun, Jeunghyun;Lee, Chunghee;Lee, Yeonsoo
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.79-83
/
2018
본 논문은 한국어 문장의 형태소, 음절, 자소를 동시에 각자 다른 합성곱층을 통과시켜 문장의 감성을 분류하는 Multi-channel CNN을 제안한다. 오타를 포함하는 구어체 문장들의 경우에 형태소 기반 CNN으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN이 많이 쓰이지만, 본 논문의 Multi-channel CNN 모델은 형태소, 음절, 자소를 동시에 고려하여 더 정확하게 문장의 감성을 분류한다. 본 논문이 제안하는 모델이 형태소 기반 CNN보다 야구 댓글 데이터에서는 약 4.8%, 영화 리뷰 데이터에서는 약 1.3% 더 정확하게 문장의 감성을 분류하였다.
QoS is an important requirement of the FTTH (Fiber To The Home) subscriber in access network using E-PON (Ethernet Passive Optical Network). In this research, we describe the structure of the access network and propose a bandwidth guarantee scheme for subscriber and service according to the requirements of the subscriber, service and system. This scheme uses two kinds of the classification table, which are called 'service classification table' and 'subscriber classification table.' Using the classification table, we can identify the flow of the subscriber and service. Also, we compute the number of hash table entry to minimize the loss ratio of flows using the M/G/k/k queueing model. Finally, we apply the DRR scheduling through virtual queueing per subscriber instead of the aggregated class.
In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.
Journal of the Korea Society of Computer and Information
/
v.19
no.6
/
pp.19-26
/
2014
An ensemble classifier system is a widely-used multi-classifier system, which combines the results from each classifier and, as a result, achieves better classification result than any single classifier used. Several methods have been used to build an ensemble classifier including boosting, which is a cascade method where misclassified examples in previous stage are used to boost the performance in current stage. Boosting is, however, a serial method which does not form a complete feedback loop. In this paper, proposed is context sensitive SVM ensemble (CASE) which adopts SVM, one of the best classifiers in term of classification rate, as a basic classifier and clustering method to divide feature space into contexts. As CASE divides feature space and trains SVMs simultaneously, the result from one component can be applied to the other and CASE achieves better result than boosting. Experimental results prove the usefulness of the proposed method.
Proceedings of the Korea Information Processing Society Conference
/
2003.11a
/
pp.497-500
/
2003
본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.321-322
/
2009
본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.
Despite its matchless position in the global semiconductor industry, Korea has not distinguished itself in the semiconductor equipment sector. Semiconductor cleaning equipment is one of the semiconductor fabrication equipment, and it is expected to be more important along with the advancement of semiconductor fabrication processes. This study attempts to analyze technology competitiveness of major countries in the sector including Korea, and explore specialty sub-areas of the countries. For this purpose, we collected patents of semiconductor cleaning equipment during the last 10 years from the US patent database, and implemented quantitative patent analysis and co-classification network analysis. The result shows that, the US and Japan have been leading the technological progress in this sector, and Korea's competitiveness has lagged behind not only the leading countries but also its competitors and even latecomers. Therefore, intensive R&D and developing technological capabilities are needed for advancing the country's competitiveness in the sector.
The purpose of this study was to examine the validity of the Manual Ability Classification System (MACS) by analysing of relation between MACS and Jebsen-Talyor Hand Function Test. The concurrent validity was examined by calculation of correlation between MACS and Jabsen-Talyor Hand Function test and the discriminant validity was examined by measurement of hand function difference according to MACS level. For this, eighty-one children with spastic cerebral palsy were employed in this study. The children were evaluated by using the MACS and Jebsen-Taylor Hand Function Test for their hand function. There were a significant correlation between the MACS and Hand function (r = .870, p < .05). The good correlation between the MACS and subtest of Jabsen-Talyor Hand function (p < .05). The hand function according to the MACS level were different significantly (p < .05). The MACS is valid classification system for assessment of hand function of children with cerebral palsy. The MACS in practice will provide usefulness for assessment of hand function in children with spastic cerebral palsy.
Proceedings of the Korean Society for Rock Mechanics Conference
/
2001.03a
/
pp.231-245
/
2001
경험적 암반 분류법과 운동학적 해석을 동시에 통합하여 사용할 수 있다면, 터널의 암반 상태를 분류하고 예측하는데 매우 유용할 것이다. TMR-net 분석 기법은 RMR 시스템의 평가 기준에 기초한 절리 방향 평가 기준을 설정하고, 이를 극 투영망 상의 평점 기준을 가진 활동 범위로 표현한 평사투영 중첩기법이다. 터널의 설계 및 시공 단계에 적용된 TMR-net 분석은 절리 방향의 영향과 관련된 효과적인 결과를 제공할 수 있었다.
Proceedings of the Korean Society for Information Management Conference
/
2003.08a
/
pp.95-103
/
2003
목차 및 권말색인과 같은 인쇄형태의 정보내용에 대한 구조화된 접근방식에서 착안하여 전자 문서의 내용에 대한 새로운 형태의 접근방식을 개발할 수 있는데, 이를 위한 방안으로 용어 자동분류 기법이 있다. 본 연구에서는 용어의 의미모호성 문제를 해결하는 동시에 용어간 계층관계 표현이 가능한 자동분류 기법으로 퍼지 클러스터링 기법을 제안하고, 대표적인 퍼지 클러스터링 알고리즘인 퍼지 c-means 기법에 대해 분석하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.