Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.79-83
- /
- 2018
- /
- 2005-3053(pISSN)
Multi-channel CNN for Korean Sentiment Analysis
Multi-channel CNN을 이용한 한국어 감성분석
- Kim, Min (Stanford University) ;
- Byun, Jeunghyun (NCSOFT Corp.) ;
- Lee, Chunghee (NCSOFT Corp.) ;
- Lee, Yeonsoo (NCSOFT Corp.)
- Published : 2018.10.12
Abstract
본 논문은 한국어 문장의 형태소, 음절, 자소를 동시에 각자 다른 합성곱층을 통과시켜 문장의 감성을 분류하는 Multi-channel CNN을 제안한다. 오타를 포함하는 구어체 문장들의 경우에 형태소 기반 CNN으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN이 많이 쓰이지만, 본 논문의 Multi-channel CNN 모델은 형태소, 음절, 자소를 동시에 고려하여 더 정확하게 문장의 감성을 분류한다. 본 논문이 제안하는 모델이 형태소 기반 CNN보다 야구 댓글 데이터에서는 약 4.8%, 영화 리뷰 데이터에서는 약 1.3% 더 정확하게 문장의 감성을 분류하였다.