• 제목/요약/키워드: 동시발생행렬

검색결과 59건 처리시간 0.026초

동시발생 행렬과 하둡 분산처리를 이용한 추천시스템에 관한 연구 (A Study On Recommend System Using Co-occurrence Matrix and Hadoop Distribution Processing)

  • 김창복;정재필
    • 한국항행학회논문지
    • /
    • 제18권5호
    • /
    • pp.468-475
    • /
    • 2014
  • 추천시스템은 선호 데이터가 대형화, 컴퓨터 처리능력과 추천 알고리즘 등에 의해 실시간 추천이 어려워지고 있다. 이에 따라 추천시스템은 대형 선호데이터를 분산처리 하는 방법에 대한 연구가 활발히 진행되고 있다. 본 논문은 하둡 분산처리 플랫폼과 머하웃 기계학습 라이브러리를 이용하여, 선호데이터를 분산 처리하는 방법을 연구하였다. 추천 알고리즘은 아이템 협업필터링과 유사한 동시발생 행렬을 이용하였다. 동시발생 행렬은 하둡 클러스터의 여러 노드에서 분산처리를 할 수 있으며, 기본적으로 많은 계산량이 필요하지만, 분산처리과정에서 계산량을 줄일 수 있다. 또한, 본 논문은 동시발생 행렬처리의 분산 처리과정을 4 단계에서 3 단계로 단순화하였다. 결과로서, 맵리듀스 잡을 감소할 수 있으며, 동일한 추천 파일을 생성할 수 있었다. 또한, 하둡 의사 분산모드를 이용하여 데이터를 처리하였을 때 빠른 처리속도를 보였으며, 맵 출력 데이터가 감소되었다.

명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법 (A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features)

  • 강승호
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.870-878
    • /
    • 2013
  • 본 논문에서는 생체인증 시스템의 하나인 지문인식 시스템의 정확도와 효율성을 높이기 위한 새로운 지문 분류 방법을 제안한다. 기존 연구에 따르면 지문은 융선과 골의 방향과 형상에 따라 몇 가지 유형으로 분류할 수 있다. 지문 데이터베이스를 사전에 유형에 따라 분류해 놓고 인식 대상인 지문의 유형을 정확하게 분류할 수 있다면 지문 인식 시간을 크게 줄일 수 있다. 왜냐하면 선택된 부류 안의 지문들만을 상대로 인증 대상인 지문과 비교하면 되기 때문이다. 본 논문은 우선 지문 영상으로부터 실제 지문 정보가 위치하는 관심영역 추출 방법을 제시한다. 다음엔 추출된 관심영역을 대상으로 질감 인식기반의 명암도 동시발생 행렬과 웨이브릿 변환을 통한 특징 추출 방법을 제시하고 기존의 명암도 동시발생 행렬만을 이용한 특징 추출 방법과 다층 퍼셉트론 및 서포트 벡터 머신을 사용해 성능을 비교한다.

유비쿼터스 환경의 디스플레이를 위한 실시간 기하보정 (Real-time Geometric Calibration for Omni-Display in Ubiquitous Computing)

  • 경동욱;임헌규;정기철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.871-873
    • /
    • 2005
  • 최근 프로젝터를 기반으로 사용자가 원하는 위치에 영상을 제공하기 위한 많은 연구가 진행중에 있다. 프로젝터는 투사 방향이 정확하지 않으면 영상왜곡이 발생되며, 영상왜곡은 일반적으로 기하보정 변환행렬을 사용하여 보정한다. 기존의 연구는 선행작업으로 그물형태의 점을 투사하거나 또는 특정 마커를 설치해서 기하보정 변환행렬을 계산한다. 이 방법들은 투사방향이 변화될 때 마다 선행작업을 요구하므로 실시간 기하보정을 수행할 수 없다. 본 논문은 투사방향이 변화될 때에도 기하보정 변환행렬을 동시에 계산하여 보정된 영상을 제공하는 실시간 기하보정 시스템을 제안한다. 우리의 시스템은 웹카메라를 사용하여 실시간으로 기하보정 변환행렬을 계산하여, 다이렉트쇼(Directshow) 기술을 사용하여 동영상 프레임을 추출하고, 추출된 프레임이미지를 기하보정 변환행렬을 사용하여 워핑(warping) 함으로써 수행한다.

  • PDF

위너 필터와 명암도 동시발생 행렬을 통한 컬러 레이저프린터 포렌식 기술 (Color Laser Printer Forensics through Wiener Filter and Gray Level Co-occurrence Matrix)

  • 이해연;백지연;공승규;이흥수;최정호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권8호
    • /
    • pp.599-610
    • /
    • 2010
  • 고성능 디지털 인쇄기기의 대중화와 손쉬운 이미지 편집 프로그램들의 등장으로 인하여 위 변조 범죄가 증가함에 따라 여러 가지 사회적인 문제를 야기하고 있다. 이를 해결하기 위해서 디지털 포렌식 기술이 활발하게 연구되고 있다. 본 논문에서는 디지털 포렌식 기술의 한 분야인 컬러 레이저 인쇄기기 판별기술을 제안한다. 각 제조사마다 인쇄방법이 다르기 때문에 육안으로 판별할 수 없는 미세한 차이가 출력물에 존재한다는 점을 이용하였다. 출력물의 노이즈를 추정하여 이러한 미세한 차이를 분석하였으며, 제안하는 방법에서는 출력물을 스캔한 이미지에 대해 위너필터를 거쳐 노이즈를 제거한 이미지를 차감하여 노이즈를 추출한다. 계산된 노이즈 대해 명암도 동시발생 행렬을 계산하여 특징값들을 추출한 뒤 이를 서포트 벡터 머신 분류기에 적용하여 인쇄기기를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위하여 7대 프린터에서 각 371장씩 출력된 총 2,597장 이미지로 실험하였다. 제안한 알고리즘은 컬러 디지털 인쇄기기의 제조사를 판별하는데 있어서 97.6%의 정확률을 보였고, 동일 제조사의 모델을 판별하는데 84.5%의 정확률을 나타냈다.

보행 과정에서 발생하는 복합 근육 활성의 양성 및 음성 공변 메커니즘 (Positive and Negative Covariation Mechanism of Multiple Muscle Activities During Human Walking)

  • 김유신;홍영기
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.173-184
    • /
    • 2018
  • 보행 과정에서 여러 근육이 동시에 수축하는 운동 모듈 또는 근육 시너지는 매우 중요한 중추신경계 운동조절 메커니즘이다. 본 연구는 걷는 동안 근육 간 양성 및 음성 공변 패턴을 이해하는 것을 목표로 한다. 본 연구에서는 트레드밀 보행 시 발생하는 다리 근육 활성을 근전도 검사를 통해 측정하였다. 동시 수축근육 그룹, 즉 운동 모듈을 확인하기 위해 우리는 양쪽 4 개의 다리 근육(전경골근, 내측 비복근, 대퇴직근, 내측 슬괵근)에서 근전도 데이터를 수집하였고, 이를 바탕으로 비음수행렬분해 및 주성분 분석을 수행하였다. 이후 근육 또는 운동 모듈 간의 다양한 조합으로부터 공변이 값을 계산하였고, 이원배치분산분석을 이용하여 각 조합들에서 발생하는 공변이 패턴을 비교하였다. 그 결과, 다양한 조합 사이에 유의미한 공변이 값의 차이가 발견되었다(p < 0.05). 같은 운동 모듈로 정의된 특정 근육 사이에서 발생하는 근 활성은 양성공변이를 보여주었으나 운동 모듈 사이에서는 음성 공변이를 보여주었다. 모든 근육 조합들 사이에서는 음성 공변이가 발생하였다. 운동 모듈 사이에서 안정적으로 발생하는 음성 공변이는 운동 모듈이 복잡한 운동 조정의 제어 단위(control unit) 일 수 있음을 암시하고 있다.

이치화 영상에 대한 계조치 동시발생행렬을 이용한 타이어 접지 패턴의 분류 (Tire tread pattern classification using gray level cooccurrence matrix for the binary image)

  • 박귀태;김민기;김진헌;정순원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.100-105
    • /
    • 1992
  • Texture is one of the important characteristics that has been used to identify objects or regions of interest in an image. Tire tread patterns can be considered as a kind of texture, and these are classified with a texture analysis method. In this sense, this paper proposes a new algorithm for the classification of tire tread pattern. For the classification, cooccurrence matrix for the binary image is used. The performances are tested by experimentally 8 different tire tread pattern and the robustness is examined by including some kinds on noise.

  • PDF

이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘 (Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix)

  • 백지연;이흥수;공승규;최정호;양연모;이해연
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.197-206
    • /
    • 2010
  • 고성능 저가의 디지털 인쇄기기의 출현으로 불법적인 위변조가 사회적인 문제로 대두되고 있고, 이를 해결하기 위해서 디지털 포렌식 기술이 필수적이다. 본 논문에서는 컬러 디지털 인쇄기기를 판별하기 위한 디지털 포렌식 기술을 제안한다. 컬러 디지털 인쇄기기는 제조사마다 인쇄방법이 다르기 때문에, 출력물에 작은 차이가 존재한다. 이와 같은 차이점을 활용하면, 임의의 주어진 출력물에 대해 어떠한 인쇄기기로 출력되었는지 구별이 가능하다. 제안하는 방법에서는 차이점을 구별하기 위하여 출력물을 스캔한 디지털 이미지에 대해 이산 웨이블릿 변환을 수행하여 계산한 고주파 영역을 추출한다. 이에 대해 명암도 동시발생 행렬을 계산한 후에 행렬 데이터의 표준편차, 첨도, 왜도, 공분산, 상관계수의 특징을 추출하였다. 추출된 특징을 서포트 벡터 머신 분류기에 적용하여 디지털 인쇄기기를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위하여 총 2,597장 이미지와 7대 프린터(HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica)를 가지고, 기존 알고리즘과 비교 분석하였다. 그 결과에 따르면 제안한 알고리즘은 컬러 디지털 인쇄기기를 판별하는데 있어서 평균 96.9% 정확률을 보였다.

질감 분석을 이용한 유도 전동기의 기계적 결함 분류 (Mechanical Fault Classification of an Induction Motor using Texture Analysis)

  • 장원철;박용훈;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권12호
    • /
    • pp.11-19
    • /
    • 2013
  • 본 논문에서는 유도 전동기의 기계적 결함을 진단하기 위해 진동신호와 질감 분석을 이용한 알고리즘을 제안한다. 영상화된 결함 신호가 갖는 무늬, 색상 대비의 특징을 분석하고, 그레이레벨 동시발생행렬(Gray-Level Co-occurrence Model, GLCM)을통해 세 가지 질감특징을추출한다. 추출된 세 가지질감 특징을 RBF(Radial Basis Function) 커널 함수를 사용하는 다중레벨 서포터 벡터 머신(Multi-Level Support Vector Machine, MLSVM)의 입력으로 사용하여 결함 유형을 분류한다. 결함 유형을 분류하는 최적의 MLSVM을 위한 RBF 커널 함수의 매개변수를 찾기 위해 매개변수 값을 0.3부터 1.0으로 바꿔가며 분류성능을 평가한 결과, 결함 유형별로 0.3에서 0.6사이의 매개변수 값에서 100%에 가까운 분류 정확성을 보였다. 또한 15dB, 20dB의 잡음이 첨가된 진동신호를 이용한 실험에서도 평균 98%이상의 높은 분류 정확성을 보였다.

효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호 (Copyright Protection for Fire Video Images using an Effective Watermarking Method)

  • ;김종면
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.579-588
    • /
    • 2013
  • 본 논문에서는 화재 비디오 영상의 저작권 보호를 위해 효과적인 워터마킹 기법을 제안한다. 제안하는 워터마킹 기법은 명암도 동시발생 행렬과 퍼지 클러스터링 알고리즘을 이용하여 화재의 색상과 텍스처의 특징을 효율적으로 이용한다. 명암도 동시발생 행렬은 각 후보 화재 영상의 블록에 대한 에너지와 동질성을 계산하여 텍스처 데이터 셋을 만드는데 사용하며, 퍼지 클러스터링은 화재 비디오 영상의 색상 분할과 워터마커 삽입을 위한 텍스처 블록을 결정하기 위해 사용된다. 선택된 텍스처 블록은 이산 웨이블릿 변환을 통해 네 가지 서브밴드 (LL, LH, HL, HH)를 가지는 1차 레벨 웨이블릿 구조로 분해되고, 워터마커는 사람의 시각에 영향을 주지 않는 LH 영역에 삽입된다. 모의실험결과, 제안한 워터마킹 기법은 약 48 데시벨의 높은 첨부 신호 대 잡음 비와 1.6-2.0의 낮은 M-특이치 분해 값을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, 크로핑, JPEG 압축과 같은 영상처리 공격에서도 기존 이미지 워터마킹 알고리즘보다 정규화된 상관 값에서 높은 성능을 보였다.