• Title/Summary/Keyword: 동시당화

Search Result 69, Processing Time 0.034 seconds

The Optimum Condition of SSF to Ethanol Production from Starch Biomass (전분질계 바이오매스의 동시당화발효 조건 최적화)

  • Na, Jong Bon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.858-862
    • /
    • 2008
  • The Simultaneous Saccharification and Fermentation(SSF) of ethanol production from potato starch studied with respect to growth pH, temperature, substrate concentration. The glucoamylase and Saccharomyceses cerevisiae have a capacity to carry out a single stage SSF process for ethanol production. The characteristics, termed as starch hydrolysis, accumulation of glucose, ethanol production and biomass formation, were affected with variation in pH, temperature and starch concentration. The maximum ethanol concentration of 12.9g/l was obtained using a starch concentration 30g/l, which represent an ethanol yield of 86%. The optimum conditions for the maximum ethanol yield were found to be a temperature of 38, pH of 4.0 and fermentation time of 18hr. Thus by using the control composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.

Studies on the Microbial Utilization of Agricultural Wastes (Part 12) Comparisions of Cellulolytic Methods for Ethanol Production from Cellulosic Material (농산폐자원의 미생물학적 이용에 관한 연구 (제12보) Ethanol 생산을 위한 Cellulose 함유물의 당화법비교)

  • Kim, Byung-Hong;Lee, Jung-Yoon;Bae, Moo;Kim, Sung-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.65-69
    • /
    • 1981
  • As a process to utilize agricultural residues, simultaneous hydrolysis-fermentation (SSF) was compared with fermentation of enzymic hydrolyzate using koji cultures of Trichoderma sp. KI 7-2 and a thermotolerant yeast Saccharomyces cerevisiae NCYC 716. Cellobiose was not detected in SSF broth whilst 15 mg/$m\ell$ of the disaccharide was found in enzymic hydrolysate of rice straw using the same enzyme source. It was found that converting glucose to ethanol in SSF process reactivated the cellobiase activity, which is inhibited by the accumulation of glucose in enzymic hydrolysis process. Cutting milled rice straw was fermented as effectively as ball milled one in SSF process. From tile results discussions are made on the product inhibition mechanism of cllulolytic enzyme system.

  • PDF

Saccharification of Raw Starch in Ethanol Fermentation (에탄올발효에서 전분질무증자당화의 가능성연구)

  • Bae, Moo;Lee, Jae-Moon
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.181-185
    • /
    • 1983
  • The possibility of the ethanol fermentation from raw cassava starch without cooking was investigated. Saccharification yield in the simultaneous saccharification-fermentation (SSF) system was compared with that in saccharification of raw cassava starch, using glucoamylase of Aspergillus shirousmi. Although the saccharification yield of raw cassava starch with 10 folds of the enzyme was 60% compared to cooked cassava starch, higher saccharification could be obtained by SSF This result is maybe due to the elimination of end product inhibition in saccharification of raw starch by glucoamylase. Final ethanol yield from raw cassava starch was about 88% under the condition of 3$0^{\circ}C$, 120 rpm shaking after 3 days in the SSF system.

  • PDF

Ethanol Fermentation of Raw Cassava Starch (II) (캇사바전분의 무증자당화에 의한 에타놀발효에 관한 연구(I I))

  • Bae, Moo;Lee, Jae-Moon
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.261-264
    • /
    • 1984
  • The optimal condition of the ethanol fermentation from raw cassava starch by simultaneous saccharification - fermentation (SSF) was studied using glucoamylase from Aspergillus sp. and a yeast strain. The rate and yield of ethanol production were optimum at pH 3.6 with shaking. The fine milling treatment was effective for both saccharification and SSF of raw cassava starch. The presaccharification at 6$0^{\circ}C$ for 1 hr before SSF increased the rate and yield of ethanol production, as well. To increase the ethanol concentration after fermentation the substrate concentration could be increased up to 2195 without the problem of viscosity. The use of high concentration ethanol tolerant yeast strains and high substrate concentration produced ethanol higher than 10%(W/V) after fermentation for 5 days.

  • PDF

Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw (암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효)

  • Jang, Suh Yoon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • Physical and chemical barriers, caused by the close association of the main components of cellulosic biomass, hinder the hydrolysis of cellulose to fermentable sugars. Since the main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose, development of an effective pretreatment process has been considered to be important. In this study, SAA (Soaking in Aqueous Ammonia) was chosen as pretreatment because this is the simple and low-cost method. Rice straw of which the production is outstandingly high in domestic agriculture residues in Korea was chosen as raw material. SSA pretreatment with various reaction time of 3 h to 72 h was tested. The enzymatic hydrolysis and SSF (Simultaneous Saccharification and Fermentation) were performed at three different temperature (30, 40 and $50^{\circ}C$) to investigate performance of SSF upon various pretreatment conditions. As a result, this SAA treated-rice straw was found to have great potential for effective enzymatic hydrolysis and SSF with lower enzyme dosage at lower temperature ($30^{\circ}C$) than its conventional SSF. In SAA addition, SAA reduced fermentation time to 24 h owing to increase the initial hydrolysis rate substantially.

Bioethanol Production from Seaweed Kappaphycus alvarezii by Simultaneous Saccharification and Fermentation (홍조류(Kappaphycus alvarezii)의 동시 당화 발효를 이용한 바이오에탄올의 생산)

  • Ra, Chae Hun;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.145-149
    • /
    • 2016
  • Thermal acid hydrolysis pretreatment of Kappaphycus alvarezii was carried out with 12% (w/v) seaweed slurry and 180 mM H2SO4 at 140°C for 5 min. Utility of the thermotolerant yeast Kluyveromyces marxianus KCTC7150 was evaluated with respect to cell growth and ethanol fermentation at 40°C was close to optimal for enzymatic hydrolysis. This could lead to the integration of both the saccharification and fermentation processes. The levels of ethanol production by simultaneous saccharification and fermentation (SSF) with non-adapted and adapted K. marxianus KCTC7150 were 9.1 g/l with an ethanol yield (YEtOH) of 0.24 and 10.2 g/l with an ethanol yield (YEtOH) of 0.27 at 156 h, respectively. The two-phase SSF process was employed in this study to improve the efficiency of ethanol fermentation. Adapted K. marxianus KCTC7150 using the two-phase SSF process produced 13.5 g/l with an ethanol yield (YEtOH) of 0.35 at 96 h. Development of the two-phase SSF process could enhance the overall ethanol fermentation yields of the seaweed K. alvarezii.

Fed-Batch Simultaneous Saccharification and Fermentation of Waste Paper to Ethanol (폐지의 유가식 동시당화발효에 의한 에탄올 생산)

  • 권정기;문현수;김준석;김승욱;홍석인
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • The fed-bach simultaneous saccharification and fermentation (SSF) of newspaper to ethanol with Brettanomyces custersii was studied. The initial substrate concentration for the effective fed-batch SSF was 8% (w/v). The initial optimum enzyme concentration was 30 FPU/g cellulose for cellulase and the optimum volumetric ratio of $\beta$-glucosidase to cellulase was 0.1. When 4% (w/v) of ball-milled newspaper was supplemented intermittently at time intervals, considering the mixing of newspaper slurry, the fed-batch SSF showed higher ethanol concentration (26.80 g/L) and two times higher ethanol production yield based on enzyme than the batch SSF.

  • PDF

Ethanol Production by Synchronous Saccharification and Fermentation using Food Wastes (음식물 쓰레기 동시당화 발효에 의한 에탄올 생산)

  • Han, Hyo-Jung;Li, Hong-xian;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.474-478
    • /
    • 2006
  • For the economically feasible production of ethanol, utilization of SFW (saccharified food wastes) as substrate for synchronous saccharification and fermentation (SSF) process was developed in this study. When 200 g of food wastes and 40 mL of enzyme ($amylase activity,\;3.0\;U/m{\ell}$) were reacted, production rate of reducing sugar was $5.84\;g/{\ell}{\cdot}h$, and consumption rate was $-3.88\;g/{\ell}{\cdot}h\;at\;35^{\circ}C$ So suitable condition of SSF was concluded at temperature of $35^{\circ}C$. Also, optimal enzyme concentration of SSF was concluded in $2.0\;U/m{\ell}$, at this condition, the production rate of reducing sugar was $4.80\;g/{\ell}{\cdot}h$ At SSF process, when 50 g of food wastes was supplied in 12 h interval, $64\;g/{\ell}$ of ethanol and 0.45 g-ethanol/g-reducing sugar in yield were obtained in 120 h fermentation. Thus, the technology of high yield of ethanol production using food wastes was confirmed. And semi-continuos SSF system for cutting off cost of enzymatic saccharification was developed in this study.

Bioethanol Production from Wasted Corn Stalk from Gangwon Province : from Enzymatic Hydrolysis to Fermentation (강원지역 폐옥수수대로부터 바이오에탄올 생산 : 효소 당화부터 발효까지)

  • Choi, Jae Min;Choi, Suk Soon;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2012
  • Among the samples prepared by various pre-treatment methods, the one pretreated by dilute sulfuric acid showed the highest glucose yield in the enzymatic hydrolysis. Statistical analysis of enzymatic hydrolysis revealed that the glucose yield was in proportion to the enzyme dosage, the ratio of the pre-treated sample to the buffer solution, and the reaction time and that the effect of enzyme dosage was predominant in the experiment range. In addition, the glucose yield was estimated to be 76.1% at an optimal enzymatic hydrolysis condition. In a separate hydrolysis and fermentation (SHF), Saccharomyces cerevisiae converted over 80% of glucose from the enzymatic hydrolysis of pre-treated wasted corn stalk by dilute sulfuric acid to bioethanol with 37% of ethanol yield and 0.42 $g/L{\cdot}hr$ of productivity. In the simultaneous saccharification and fermentation (SSF), 59.5% of conversion from glucan to ethanol and 0.20 $g/L{\cdot}hr$ of productivity were achieved. In both SHF and SSF, approximately 88 g of bioethanol could be obtained from 1 kg of wasted corn stalk. The possible amount of bioethanol in Gangwon province were estimated to be 1.9 kiloton with the assumption of the 50% of collection ratio.

Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia (황산과 암모니아를 이용한 목질계 바이오매스의 전처리 공정에 따른 당화 및 발효공정 전략)

  • Cayetano, Roent Dune;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This is to study the effects of various pretreatment methods of agricultural residue, corn stover, and to compare the feature and pros and cons of each method including dilute sulfuric acid (DSA), soaking in aqueous ammonia (SAA), and ammonia recycle percolation (ARP). In order to convert corn stover to ethanol, various pretreatments followed by simultaneous saccharification and co-fermentation (SSCF) were tested and evaluated in terms of ethanol yield. With 3%, w/w of glucan loading using ARP-, DSA-, and SAA-treated solids, SSCFs using recombinant E. coli strain (ATCC$^{(R)}$ 55124) with commercial enzymes (15 FPU of Spezyme CP/g-glucan and 30 CBU/g-glucan enzyme loading) were tested. In the SSCF tests, 87, 90, and 78% of theoretical maximum ethanol yield were observed using ARP-, DSA-, and SAA-treated solids, respectively, which were 69, 58, and 74% on the basis of total carbohydrates (glucan + xylan) in the untreated corn stover. Ethanol yield of SAA-treated solid was higher than those of ARP- and DSA-treated solids. In addition, SSCF test using treated solids plus pretreated hydrolysate indicated that the DSA-treated hydrolysate showed the strongest inhibition effect on the KO11 strain, whereas the ARP-treated hydrolysate was found to have the second strongest inhibition effect. Bioconversion scheme using SAA pretreatment and SSCF can make the downstream process simple, which is suggested to produce ethanol economically because utilization of hemicellulose in the hydrolysate is not necessary.