• Title/Summary/Keyword: 동결거동

Search Result 95, Processing Time 0.02 seconds

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey (전기비저항 탐사를 활용한 동결 지반의 거동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.115-125
    • /
    • 2023
  • In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity (장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구)

  • Kim, B.C.;Kim, J.I.;Kim, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

Experimental Study on the freezing of Aqueous Binary Solution Saturated Packed bed in a Square Cavity (다공성 물질이 충전된 정방형 밀폐용기 내에서 수용성 혼합용액의 동결거동에 관한 실험적 연구)

  • Choi, J.Y.;Kim, B.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.175-182
    • /
    • 1992
  • Freezing of the binary solution ($H_2O-NaCl$) saturating a packed bed of spheres is investigated experimentally. The system is cooled through its top surface, and the bottom is maintained at a temperature above the liquidus. Experiments are performed on the hypolutectic side, and the cold wall temperature is lower than the eutectic point. The effects of initial mixture concentration, superheat and glass bead diameter on temperature and concentration distributions are investigated. Supercooling was observed only at early times of the freezing process for experiments with 5% initial salt concentration. Flow visualization experiments and mushy-liquid interface position observations revealed natural convection in the liquid region. Remelting phenomena was not observed at both the solid-mushy and mushy-liquid interfaces.

  • PDF

Experimental Study for Thermal Characteristics of Frozen Soil Samples (동토 시료의 열적 특성 분석을 위한 실험적 연구)

  • Sewon, Kim;Sangyeong, Park;Jongmuk, Won;YoungSeok, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • Recently, the Arctic resource development project, where undeveloped energy resources (oil, natural gas, etc.) are deposited, is actively being promoted for the perspective of diversifying the construction market and developing future energy resources. However, the frozen ground always has problems such as sinking and frost-heaving due to extreme weather. Therefore, it is necessary to analyze the thermal characteristics of the frozen soil to secure the stability of the ground structure. In this study, a series of laboratory tests were performed to evaluated the thermal characteristics of frozen soil samples in the oil sand field in Alberta, Canada. In additon, it was compared with the results of domestic(Gangwond-do) sample performed under the same conditions. As a comparison results of the experiments, it was clarified that the different frozen water content and thermal conductivity characteristics by temperature after completion of freezing could affect the frozen soil behavior.

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity (간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.53-62
    • /
    • 2023
  • The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.

A Study of Landfill Coyer Liners by Freezing/Thawing (동결/융해에 따른 폐기물 매립지 복토층 연구)

  • Jai-Young Lee
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • The cover liners at municipal and hazardous waste landfill is not emphasized as much as the bottom liners. However, one of the most effective reason of landfill destroy is the cover liner failure. The cover system at municipal and hazardous waste landfill, 1 perform the following functions, at minimum: promote surface runoff, impede infiltration, protect settlement in the landfill, and provide a buffer from surface exposure of the waste. This research was to expand the existing knowledge base of landfill cover liner behavior during period of freeze/thaw Also, the great Lysimeter was built in the laboratory to provide as much as same condition with the field and three designs were simulated by actual cover materials. The result of simulation indicated the clay was effected by freezing/thawing. The degradation of cover liners in the frost penetration affects the physical, engineering properties of clay. these factors may consider to design and construct of the landfill. This paper provides the description of testing cover liners, experimental results and a discussion of the results of the simulation.

  • PDF

Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils (동결토의 일축압축강도와 전단강도 상관관계 분석에 관한 연구)

  • Kang, Jae-Mo;Lee, Jang-Guen;Lee, Joonyong;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • The mechanical behavior of frozen soils is different from that of unfrozen soils due to the phase change between water and ice. The strength characteristics of frozen soils are governed by the intrinsic material properties such as grain size, ice and water content, air bubbles, and by externally imposed testing conditions such as temperature, freezing time, and strain rate. Especially, the strength of the frozen soils is generally higher than that of unfrozen soils due to ice binding capacity with soil particles, and is strongly affected by a highly complex interaction between the solid soil skeleton and the pore matrix, composed of ice and unfrozen water. In this study, the direct shear test and unconfined compression test are carried out inside of a large-scaled freezing chamber, and the relationships between cohesion and unconfined compression strength under various freezing temperature conditions are discussed.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning (Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석)

  • Chae, Deokho;Lee, Jangguen;Kim, Kwang-Yeom;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

Long-Termed Behavior and Durability of Foam-Mixed Concrete Containing Porous Aggregates (다공성 골재를 함유한 기포혼합콘크리트의 장기거동 및 내구특성)

  • Kim, Sang Chel;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.113-123
    • /
    • 2012
  • The technology developed for the decrease of applying loads and self-weight of a structure is to improve conventional Foam Cement Banking Method (FCB) by applying mixed slurry of bottom ash, cement and foams. Since the foam-mixed concrete, which is a major material of the Bottom ash-mixed Light weight concrete Banking method (BLB) developed, contains mineral admixture such as cement, the behavior shows time-dependent deformation and deterioration of durability due to environmental exposure. Thus, this study is subject to figure out the characteristics of long-termed behavior and durability of the developed method by carrying out experiments for schemed parameters, which are considered to be factors affecting mainly on concrete's characteristics from mechanical analysis. As results of tests, it was found that the developed concrete offers higher resistance than conventional foamed concrete in terms of long-termed behaviors associated with drying shrinkage and creep, and durability problems of freeze-thaw and carbonation processes, especially with addition of bottom ash.