DOI QR코드

DOI QR Code

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey

전기비저항 탐사를 활용한 동결 지반의 거동 평가

  • Jang, Byeong-Su (Dept. of Disaster Safety Engrg., Daejeon Univ.) ;
  • Kim, Young-Seok (Northern Infrastructure Specialized Team, Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Se-Won (Dept. of Geotechnical Engrg. Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Choi, Hyun-Jun (Northern Infrastructure Specialized Team, Korea Institute of Civil Engrg. and Building Technology) ;
  • Yoon, Hyung-Koo (Dept. of Disaster Safety Engrg., Daejeon Univ.)
  • 장병수 (대전대학교 재난안전공학과) ;
  • 김영석 (한국건설기술연구원 북방인프라특화팀) ;
  • 김세원 (한국건설기술연구원 지반연구본부) ;
  • 최현준 (한국건설기술연구원 북방인프라특화팀) ;
  • 윤형구 (대전대학교 재난안전공학과)
  • Received : 2023.12.05
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

해당 연구의 목적은 비파괴 탐사 기법의 일환인 전기비저항 탐사 방법을 활용하여 동결 지반의 거동을 평가하는 것으로, 현장 실험을 통해 그 특성을 살펴보았다. 현장 실험은 동결된 상태를 가속화하기 위하여 유체를 주입한 인위적인 동결 지반을 만들었으며, 결과를 비교하기 위하여 이와 근접한 지역에서 자연적으로 동결된 지반에도 실험을 진행하였다. 실험은 전기비저항 탐사 외에 측정 값의 신뢰성을 비교할 수 있도록 동적 콘 관입 실험(Dynamic Cone Penetration Test)를 추가적으로 활용하였으며, 지반의 함수비도 평가하기 위해 Time Domain Reflectometry (TDR) 탐사도 수행하였다. 현장 실험은 대기 온도가 영하인 2월과 영상 조건을 보이는 5월에 각각 진행하였다. 전기비저항 탐사로 측정된 결과는 온도에 의존하는 경향이 있어 각 측정 값들은 온도 보상을 수행한 후 결과를 비교하였다. 측정 결과 동결 조건에서는 지반이 고체 특성을 보여 고비저항 구간이 다소 나타났으며 이를 간극률로 환산하였다. 환산된 간극률은 DCPT 결과로 유추한 간극률과 비교하여 신뢰성을 검증하였으며, 동결토에서 측정한 결과가 타당한 값으로 나타났다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 한국연구재단(NRF-2020R1A2C2012113)과 국토교통부 국토교통과학기술진흥원 'AI 기반 가스·오일 플랜트 운영·유지관리 핵심기술 개발(RS-2021-KA161932)' 사업의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. Archie, G. E. (1942), The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME, Vol.146, No.1, pp.54-62.
  2. Bird, K. J., Charpentier, R. R., Gautier, D. L., Houseknecht, D. W., Klett, T. R., Pitman, J. K., Moore. T. E., Schenk. C. J., Tennyson, M. E., and Wandrey, C. R. (2008), Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle (No. 2008-3049), US Geological Survey.
  3. Byun, J. H., Park, C. H., Won, K. S., and Yoon, H. K. (2014), Estimation of Porosity Based on the Electrical Resistivity, Journal of the Korean Society of Hazard Mitigation, Vol.14, No.3, pp. 163-170.
  4. Cho, M. H., Lee, Y. H., Kim, N. S., and Jee, K. H. (2013), Temperature Sensitivity Analysis of TDR Moisture Content Sensor for Road Pavement, Journal of the Korean Society of Civil Engineers, Vol.33, No.1, pp.329-336. https://doi.org/10.12652/KSCE.2013.33.1.329
  5. Chun, O. H., Lee, J. S., Park, M. C., Bae, S. G., and Yoon, H. K. (2013), Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method, Journal of the Korean Geotechnical Society, Vol.29, No.3, pp.51-60.
  6. Ham, S.Y., Kim, H.S., Cheong, J.Y., Jang, S., Cha, Y.H., and Ryu, S.H. (2003), "Hydrogeological Characteristics of Iryong Area in Haman-Gun for Developing Bank-filtrated Water", Proceedings of KSEG 2003 Spring Conference, pp.159-163.
  7. Okpoli, C. C. (2013), Sensitivity and Resolution Capacity of Electrode Configurations, International Journal of Geophysics, 2013.
  8. Saad, R., Nawawi, M. N. M., and Mohamad, E. T. (2012), Groundwater Detection in Alluvium Using 2-D Electrical Resistivity Tomography (ERT), Electronic Journal of Geotechnical Engineering, Vol.17, pp.369-376.
  9. Scala, A. J. (1956), Simple Methods of Flexible Pavement Design Using Cone Penetrometers, New Zealand Engineering, Vol.11, No.2, pp.1-34.
  10. Shan, W., Liu, Y., Hu, Z., and Xiao, J. (2015), A Model for the Electrical Resistivity of Frozen Soils and an Experimental Verification of the Model, Cold Regions Science and Technology, Vol.119, pp.75-83. https://doi.org/10.1016/j.coldregions.2015.07.010
  11. Szalai, S. and Szarka, L. (2008), On the Classification of Surface Geoelectric Arrays, Geophysical Prospecting, Vol.56, No.2, pp. 159-175. https://doi.org/10.1111/j.1365-2478.2007.00673.x
  12. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M. (2008), Application of the Dynamic Cone Penetrometer (DCP) for Determination of the Engineering Parameters of Sandy Soils, Engineering Geology, Vol.101, No.3-4, pp.195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  13. Jung, S. H., Yoon, H. K., and Lee, J. S. (2011), "Application of Temperature-compensated Resistivity Probe in the Field", Journal of the Korean Society of Civil Engineers (KSCE), Vol.31, No.4, pp.117-125.
  14. Kim, S. Y., Hong, W. T., Hong, S. S., Baek, Y., and Lee, J. S. (2016), Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils According to Degree of Saturations and Silt Fractions, Journal of the Korean Geotechnical Society, Vol.32, No.12, pp. 59-67. https://doi.org/10.7843/KGS.2016.32.12.59
  15. Kim, S. Y., Hong, W. T., and Lee, J. S. (2018), Silt Fraction Effects of Frozen Soils on Frozen Water Content, Strength, and Stiffness, Construction and Building Materials, Vol.183, pp.565-577. https://doi.org/10.1016/j.conbuildmat.2018.06.187
  16. Kim, S. Y., Hong, W. T., and Lee, J. S. (2019), Role of the Coefficient of Uniformity on the California Bearing Ratio, Penetration Resistance, and Small Strain Stiffness of Coarse Arctic Soils, Cold Regions Science and Technology, Vol.160, pp.230-241. https://doi.org/10.1016/j.coldregions.2019.02.012
  17. Kim, S. Y. and Lee, J. S. (2020), Energy Correction of Dynamic Cone Penetration Index for Reliable Evaluation of Shear Strength in Frozen Sand-silt Mixtures, Acta Geotechnica, Vol.15, pp.947-961. https://doi.org/10.1007/s11440-019-00812-y
  18. Kim, S. Y., Kim, Y., and Lee, J. S. (2021), Effects of Frozen Water Content and Silt Fraction on Unconfined Compressive behavior of Fill Materials, Construction and Building Materials, Vol.266, 120912.
  19. Kim, K.S., Lee, J. H., Lee, E. S., Ju, H. T., Hyun, C. U., Park, S. J., Kim, O. S., Lee, S. J., and Kim, J. S. (2020), Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data, The Korean Society of. Economic and Environmental Geology, Vol.53, No.4, pp.413-423.
  20. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2011), Four Electrode Resistivity Probe for Porosity Evaluation (Vol. 34), West Conshohocken, PA, USA: ASTM International.
  21. Lee, C., Kim, K. S., Woo, W., and Lee, W. (2014), Soil Stiffness Gauge (SSG) and Dynamic Cone Penetrometer (DCP) Tests for Estimating Engineering Properties of Weathered Sandy Soils in Korea, Engineering Geology, Vol.169, pp.91-99. https://doi.org/10.1016/j.enggeo.2013.11.010
  22. Lee, Hyoung Kyu, Lee, and Yong-Sun (2021), A Study on the Analysis of the Relaxation Area and the Improvement Effect of the Ground by Road Subsidence, Journal of the Korean Geotechnical Society, Vol.37, No.1, pp.29-41.
  23. Leger, E., Dafflon, B., Soom, F., Peterson, J., Ulrich, C., and Hubbard, S. (2017), Quantification of Arctic Soil and Permafrost Properties Using Ground-penetrating Radar and Electrical Resistivity Tomography Datasets, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.10, No.10, pp.4348-4359. https://doi.org/10.1109/JSTARS.2017.2694447
  24. Yoon, H. K. and Lee, J. S. (2010), Field Velocity Resistivity Probe for Estimating Stiffness and Void Ratio, Soil Dynamics and Earthquake Engineering, Vol.30, No.12, pp.1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008
  25. Topp, G. C., Davis, J. L., and Annan, A. P. (1980), Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines, Water resources research, Vol.16, No.3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  26. Park, J. H., Seo, S. Y., Hong, S. S., Kim, Y., and Lee, J. S. (2012), Variation of Electrical Resistivity Characteristics in Sand-silt Mixtures due to Temperature Change, Journal of the Korean GEO-environmental Society, Vol.13, No.10, pp.25-32.
  27. Park, C.-H., Won, K.-S., Byun, J.-H., Min, D.-H., and Yoon, H.-K. (2013), The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR, Journal of the Korean Geotechnical Society, Vol.29, No.9, pp.17-29.
  28. Zhou, M., Wang, J., Cai, L., Fan, Y., and Zheng, Z. (2015), Laboratory Investigations on Factors Affecting Soil Electrical Resistivity and the Measurement, IEEE Transactions on Industry Applications, Vol.51, No.6, pp.5358-5365.  https://doi.org/10.1109/TIA.2015.2465931