• Title/Summary/Keyword: 동강성 계수

Search Result 16, Processing Time 0.023 seconds

Analysis on the Dynamic Characteristics of a Rubber Mount Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무 마운트의 동특성 해석)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • In this paper, a statistical calibration method is proposed in order to identify the variability of complex modulus for a rubber material due to operational temperature and experimental/model errors. To describe temperature- and frequency-dependent material properties, a fractional derivative model and a shift factor relationship are used. A likelihood function is defined as a product of the probability density functions where experimental values lie on the model. The variation of the fractional derivative model parameters is obtained by maximizing the likelihood function. Using the proposed method, the variability of a synthetic rubber material is estimated and applied to a rubber mount problem. The dynamic characteristics of the rubber mount are calculated using a finite element model of which material properties are sampled from Monte Carlo simulation. The calculated dynamic stiffnesses show very large variation.

Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method (유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구)

  • 박노길;박성태
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.103-113
    • /
    • 1995
  • Since the mechanical properties of the rubber connectors used in the vehicle structures are sensitive on the dynamic characteristics of the system, they must be exactly evaluated. In this paper, both finite deformation theory and Hookean model are considered to calculate the stiffness coefficients of rubber connectors. An expert system is developed by using finite element method. When the equivalent stiffness coefficients on the same kinds of isolators used in actual vehicles were emperically examined, the results were largely dispersed due to the lack of the quality control on the material properties. To compensate the errors caused by the mathematical modeling and the mechanical properties, a practical method which identifies the shear and bulk moduli of rubber with the experimented overall force-deformation curves is suggested and applied to the engine isolators of vehicle.

  • PDF

Biomechanical Properties of the Cervical Muscles Depending on Using of a Smartphone (스마트 폰 사용에 따른 경추부 근육의 생체역학성)

  • Kim, Yong-Woo;Kim, Maeng-Kyu
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.3
    • /
    • pp.543-551
    • /
    • 2016
  • The study was aimed at investigating the relationship between biomechanical properties of cervical muscles and smartphone addiction score in fifty healthy males using smartphone more than 60 minutes each day. The usage of smartphone was evaluated by smartphone addiction survey developed from Korean International Society Agency. Biomechanical properties of three major cervical muscles; splenius capitis, sternocleidomastoid and upper trapezius, were measured by Myoton, and conducted five parameters; frequency, decrement, stiffness, creep, and relaxation time. As results, all parameters had less than 2% of coefficient of variation(CV) between measurement intervals. Also, intra-class correlation coefficient(ICC) indicated a high reliability(ICC>.9, p<.01). Moreover, the smartphone addiction score was significantly different in frequency(r=.353, p<.05) and stiffness(r=.346, p<.05) on upper trapezius; in addition, in decrement(r=-.284, p<.05) and creep(r=.288, p<.05) on sternocleidomastoid. Especially, splenius capitis was closely related with the overuse of smartphone(frequency, r=-.368, p<.01; decrement, r=-.405, p<.01; stiffness, r=-.424, p<.01). In conclusion, this study implied that the overuse of smartphone is significantly related with the damage of cervical muscles, cervical pain, and headache; furthermore, Myoton can be used as an effective device to assess mechanical properties of cervical muscles.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진지로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.342.1-342
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. (omitted)

  • PDF

Dynamic Analysis of Design Data for Structural Lap Joint (LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.57-74
    • /
    • 1998
  • This paper is concerned with a combination of experimental and analytical investigation aimed at identifying modeling errors, accounted for the lack of correlation between experimental measurements and analytical predictions of the modal parameters for lap joint panels. A nonlinearity vibration test methodology, initiated from the theoretical analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the rivet fastener. Based on the experimental evidence on discrepancies between measured and predicted frequencies, improved finite element models of the joint are developed using PATRAN and ABAQUS, in which the beam element size is evaluated from the joint stiffnesses readily determined in the test. The beam element diameter as a principal design parameter is tuned to match experimental results within the evaluated bound value. Frequencies predicted by the proposed numerical model are compared with frequencies measured by the test. Improved predictions based on this new model are observed when compared with those based on conventional modeling practices.

  • PDF

Consideration of Static-strain-dependent Dynamic Complex Modulus in Dynamic Stiffness Calculation of Viscoelastic Mount/Bushing by Commercial Finite Element Codes (점탄성 제진 요소의 복소동강성계수 산출을 위한 상용유한요소 코드 이용시 복소탄성계수의 정하중 의존성 반영 방법)

  • Kim, Kwang-Joon;Shin, Yun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.372-379
    • /
    • 2006
  • Little attention has been paid to static-strain-dependence of dynamic complex modulus of viscolelastic materials in computational analysisso far. Current commercial Finite Element Method (FEM) codes do not take such characteristics into consideration in constitutive equations of viscoelastic materials. Recent experimental observations that static-strain-dependence of dynamic complex modulus of viscolelastic materials, especially filled rubbers, are significant, however, require that solutions somehow are necessary. In this study, a simple technique of using a commercial FEM code, ABAQUS, is introduced, which seems to be far more cost/time saving than development of a new software with such capabilities. A static-strain-dependent correction factor is used to reflect the influence of static-strains in Merman model, which is currently the base of the ABAQUS. The proposed technique is applied to viscoelastic components of rather complicated shape to predict the dynamic stiffness under static-strain and the predictions are compared with experimental results.

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

Estimation of Variability for Complex Modulus of Rubber Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무의 복소계수 변동성 평가)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.362-365
    • /
    • 2011
  • 본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 제진모델의 오차를 고려하였다. 고무는 분수차 미분 모델로 표현되었고 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다.

  • PDF

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

A Practical Research of Engine Mount Optimization in a Construction Equipment (건설기계 엔진마운트 최적설계에 관한 실용적 연구)

  • Shin, Myung-Ho;Joo, Kyung-Hoon;Kim, Woo-Hyung;Kim, In-Dong;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF