• Title/Summary/Keyword: 독성종말점

Search Result 19, Processing Time 0.025 seconds

Fundamentals of Ecotoxicity Evaluation Methods using Domestic Aquatic Organisms in Korea : (I) Fish (국내 생물종을 이용한 생태독성평가 기반연구 : (I) 어류)

  • Nam, Sun-Hwa;Yang, Chang-Yong;An, Youn-Joo;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.173-183
    • /
    • 2007
  • The Ministry of Environment plans to introduce the Whole Effluent Toxicity (WET) system in Korea. The WET test is well established in developed countries with recognizing of the limitations of physicochemical analysis method and potential risk of chemicals in water medium. Therefore, it is essential to build the ecotoxicity infrastructure for the induction of WET test. In this study, we extensively collected the domestic and foreign toxicity test methods which employ native test species to Korea. And we suggested that the domestic ecotoxicity test methods with domestic test species in Korea through extracting the range of test conditions. Five domestic fish species selected were Carassiu auratus (Crucian carp), Cyprinus carpio(Common carp), Gasterosteus aculeatus (Three spine stickleback), Misgurnus anguillicaudatus (Oriental weather fish) and Oryzias latipes (Japanese medaka), The toxicity test methods with native test species to Korea were collected from the standard methods (OECD, U.S. EPA, ASTM), government reports, SCI papers and domestic papers. We collected the 32 test methods, and suggested the suitable aquatic toxicity test methods for fish. It is expected that this study could prove a useful information to establish the ecotoxicity test methods with domestic aquatic organisms in Korea henceforth.

Toxic Effects of 5 Organic Solvents on Euglena agilis (국내 생물 종 유글레나(Euglena agilis)를 이용한 5종 유기용매의 독성평가)

  • Lee, Junga;Chang, Soon-Woong;Kim, Ji-Tae;Kim, Dong-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Acute toxicity tests for 5 organic solvents were conducted using Euglena agilis carter (E. agilis), a Korean domestic organism. Organic solvents decreased the growth rate of E. agilis in a dose dependent manner. The toxicity to E. agilis was increased in the order of chloroform>acetone${\geq}$ethanol${\geq}$methanol>DMSO based on $EC_{50}$ values from growth test. Organic solvents also induced cell motility and morphological changes of E. agilis. Especially significant effects on the cell swimming velocity, motility, and compactness were observed for chloroform at the concentration of $EC_{50}$ calculated from 96 hr growth test. Overall, toxic responses of E. agilis to test substances are comparable to or more sensitive than D. magna, M. macrocopa and V. fischeri. Our study demonstrates that E. agilis can be a putative ecotoxicity test model organism to assess domestic water quality. Results obtained from this study can be applied to establish the standard test guidelines for ecotoxicity test using E. agilis.

Fundamentals of Ecotoxicity Evaluation Methods Using Domestic Aquatic Organisms in Korea : (II) Water Flea (국내 생물종을 이용한 생태독성평가 기반연구 : (II) 물벼룩류)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.357-369
    • /
    • 2007
  • Water fleas are very important organisms in aquatic ecosystem because they are key constituents of food webs as either glazers or foods for predators. Daphnia magna is a representative test species and it has been extensively used in ecotoxicity evaluation. However, Daphnia magna has not been found yet in Korean water environment. There are limitations of using the foreign species such as Daphnia magna to reflect domestic situations in Korea. Consequently it is mandatory to find domestic species suitable for bioassay, and to develop corresponding toxicity test methods using the domestic species. In this study, we widely collected the domestic and foreign toxicity test methods performed by using domestic water fleas in Korea. The 58 test methods were collected from the standard methods (OECD, US EPA, ASTM), government reports, SCI papers and domestic papers. Ten domestic water fleas selected were Bosmina longirostris, Ceriodaphnia dubia, Ceriodaphnia reticulata, Daphnia obtusa, Daphnia puex, Moina macrocopa, Moina micrura, Simocephalus mixtus, Simocephalus serrulatus, and Simocephalus vetulus. We suggested the domestic ecotoxicity test methods using domestic water fleas in Korea through providing a range of test conditions, and future directions for toxicity test using water flea. This study could be a useful basis for establishing the aquatic toxicity test methods with domestic organisms in Korea.

Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials (나노물질을 이용한 다세대전이 및 독성 연구 추세)

  • Moon, Jongmin;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.395-401
    • /
    • 2016
  • Nano-saftey has become an emerging issue recently, because of the broad use of nanomaterials in nano-industries and commercial areas. For a sustainable development in the nano-industry, active studies on nano-safety should be executed, especially on the potential risks in engineered nanomaterials (ENMs). Although acute and chronic assessments of nanomaterials have been extensively studied in many studies, multigenerational studies are very scarce. Overall, multigenerational studies have progressed as two different trends, studying post-generational effects or trans-generation effects. This study intended to suggest further nano-safety studies based on the trends and limitations of current ones. Through a comparative analysis, we investigated peer-reviewed multigenerational studies that used nanomaterials. Thirteen studies on post-generation effects confirmed generational nano-toxicity via several bioassays, such as mortality, fertility, and behavioral assays. Seven studies on trans-generation effects demonstrated nanomaterial pathways to next generations, using imaging techniques. Until now, mechanisms for post-generational nano-toxicity has been rarely proposed. Thus, we propose that complementary studies on such mechanisms are imperative for future studies.

An Introductory Research for Development of Soil Ecological Risk Assessment in Korea (토양생태 위해성평가 제도 국내 도입방안 연구)

  • An, Youn-Joo;Kim, Shin Woong;Moon, Jongmin;Jeong, Seung-Woo;Kim, Rog-Young;Yoon, Jeong-Ki;Kim, Tae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • Human activities have resulted in soil pollution problems to us. Human and ecological risk assessment have been suggested as an efficient environmental management strategy for protecting human and ecosystems from soil pollution. However, Korean environmental policy is currently focused on human protection, and fundamental researches for ecology protection are required for institutional frameworks. In this study, we developed a schematic frame of Korean soil ecological risk assessment, and suggested the basic information for its application. This study suggested a soil ecological risk assessment scheme consisting of 4 steps for derivation of Predicted-No-Effect-Concentration (PNEC): 1) ecotoxicity data collection and reliability determination, 2) data standardization, 3) evaluation of data completeness for PNEC calculation, and 4) determination of ecological-risk. The reliability determination of ecotoxicity data was performed using Reliability Index (RI), and the classification of domestic species, acute/chronic, toxicity endpoint, and soil properties was used for data cataloging. The PNEC calculation methodology was determined as low-reliability, middle-reliability, and high-reliability according to their quantitative and qualitative levels of ecotoxicity data. This study would be the introductory plan research for establishment of Korean soil ecological risk assessment, and it can be a fundamental framework to further develop guidelines of Korean environmental regulation.

Copper Toxicity on Survival, Respiration and Organ Structure of Tegillarca granosa (Bivalvia: Arcidae) (꼬막, Tegillarca granosa의 생존, 호흡 및 기관계 구조에 미치는 구리 (Cu) 의 독성)

  • Shin, Yun Kyung;Park, Jung Jun;Ju, Sun Mi;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • This study was conducted to find out the changes of survival, respiration and organ structure of Tegillarca granosa exposed to copper (Cu). Experimental period was four weeks. Experimental groups were composed of one control condition and three copper exposure conditions (0.125, 0.250 and 0.500 mg/L). The results of the study confirmed that copper induces reduction of survival rate and respiration rate and histopathology of organ structure of the bivalve. In the copper concentration of 0.500 mg/L, mortality was 66.7% after Cu exposure of 4 weeks. Respiration rate was observed exposure groups lower than control decline by 18%. Histological analysis of organ system illustrated degeneration of epithelial layer and connective tissue layer of the mantle. Also, histological degenerations as epithelial atrophy and disappearance of lateral cilia are recognized in the gill and it was observed expansion of hemolymph sinus, disruption of epithelial layer, acidification of mucous and degeneration of muscle fiber bundles in the foot. In the digestive diverticulum, it was showed atrophy and destruction of basophilic cell and epithelial cell in the digestive tubules.

Initial Ecological Risk Assessment of 1,2-Benzisothiazol-3-one in Environment (환경 중 1,2-Benzisothiazol-3-one에 대한 초기 생태위해성 평가)

  • Han, Hye-Jin;Kim, EunJu;Yoo, SunKyoung;Ro, Hi-Young;Baek, Yong-Wook;Shim, IlSeob;Eom, Ig-Chun;Kim, Hyun-Mi;Kim, PilJe;Choi, Kyunghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In this study, physico-chemical properties and environmental fate were investigated and ecotoxicity tests using fish, daphnia and algae were conducted for an initial ecological risk assessment of 1,2-Benzisothiazol-3-one. Due to low volatility of the test substance under environmental conditions, it is likely to distributed in soil and water environment. The compound has low adsorption in the soil, with low bioconcentration potential. Acute toxicity results showed that 96 h-$LC_{50}$ for Oryzias laties was 4.7 mg/L (measured) and 48h-$EC_{50}$ for Daphnia magna was 3.3 mg/L (measured). In a growth inhibition test with Pseudokirchneriella subcapitata, 72 h-$EC_{50}$ was 0.456 mg/L (growth rate, nominal) and 0.262 mg/L (yield, nominal). Using the acute toxicity value of algae, predicted no-effect concentration (PNEC) in the aquatic environment was determined to be 2.62 ${\mu}g/L$ using an factor of 100. According to globally harmonized system (GHS), the compound was categorized as aquatic acute 1 for algae, while it was categorized as aquatic acute 2 for fish and daphnia. This screening assessment suggests that the test substance may pose ecological risks in the aquatic environment.

Determination of Target Clean-up Level and Risk-Based Remediation Strategy (위해성에 근거한 정화목표 산정 및 복원전략 수립)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2007
  • Risk-based remediation strategy (RBRS) is a consistent decision-making process for the assessment and response to chemical release based on protecting human health and the environment. The decision-making process described integrates exposure and risk assessment practices with site assessment activities and remedial action selection to ensure that the chosen actions are protective of human health and the environment. The general sequences of events in Tier 1 is as follows: initial site assessment, development of conceptual site model with all exposure pathways, data collection on pollutants and receptors, and identification of risk-based screening level (RBSL). If site conditions do not meet RBSL, it needs further site-specific tier evaluation, Tier 2. In most cases, only limited number of exposure pathways, exposure scenarios, and chemicals of concern are considered the Tier 2 evaluation since many are eliminated from consideration during the Tier 1 evaluation. In spite of uncertainties due to the conservatism applied to risk calculations, limitation in site-specific data collections, and variables affecting the selection of target risk levels and exposure factors, RBRS provides us time- and cost-effectiveness of the remedial action. To ensure reliance of the results, the development team should consider land and resource use, cumulative risks, and additive effects. In addition, it is necessary to develop appropriate site assessment guideline and reliable toxicity assessment method, and to study on site-specific parameters and exposure parameters in Korea.

Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus (둥근성게(Mesocentrotus nudus)와 말똥성게(Hemicentrotus pulcherrimus)의 수정 및 정상 배아발생률을 이용한 Phenanthrene의 독성영향)

  • Choi, Hoon;Lee, Ju-Wook;Park, Yun-Ho;Lee, Seung-Min;Choi, Yoon-Seok;Heo, Seung;Hwang, Un-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.333-342
    • /
    • 2020
  • The aim of this study was to define the toxic effects of phenanthrene (PAHs) on the fertilization and normal embryogenesis rates in the two species of sea urchin (Hemicentrotus pulcherrimus and Mesocentrotus nudus). The sperm and fertilized eggs of both sea urchin species were exposed to serial dilutions of phenanthrene for 10 min and 48 hours, respectively. The fertilization rate and normal embryogenesis rate of H. pulcherrimus and M. nudus were decreased in a concentration-dependent manner. The EC50 for the fertilization rate of H. pulcherrimus and M. nudus was 17.48 mg L-1 and 16.21 mg L-1, and the EC50 for the normal embryogenesis rate was 2.99 mg L-1 and 0.36 mg L-1, respectively. Between the two species, H. pulcherrimus was more sensitive to phenanthrene exposure, and 48 h normal embryogenesis was the more sensitive endpoint. Therefore, the results of this study demonstrated that the exposure of both sea urchin species to phenanthrene caused alterations in egg fertilization and the early developmental stages.