• Title/Summary/Keyword: 도플러 주파수 천이

Search Result 29, Processing Time 0.018 seconds

A Multicarrier CDMA System for Multipath and Doppler Diversity (다중경로 및 도플러 다이버시티를 위한 멀티캐리어 CDMA 시스템)

  • Park Hyung-Kun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • One of the principal disadvantages of multicarrier modulation technique is the sensitivity to the frequency offset introduced by Doppler shift. This frequency offset introduces inter-carrier interference (ICI) among the multiplicity of carriers in the multicarrier modulated signal. However, Doppler spread induced by temporal channel variations can Provide another means for diversity. In this paper, we propose a modified multicarrier code division multiple access (CDMA) system to exploit Doppler diversity as well as multipath diversity. The key work of our framework is a canonical time-frequency-based decomposition of the mobile wireless channel into series of independent fading channel. The decomposition naturally leads to a time-frequency generalization of the Rake receiver that exploits both multipath and Doppler diversity.

Doppler shift frequency estimation and compensation in underwater acoustic communication using triangle spread carrier technique (Triangle spread carrier 기법을 이용한 수중음향통신에서 도플러 천이 주파수 추정 및 보상 )

  • Chang-hyun Youn;Hyung-in Ra;Kyung-one Lee;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.169-180
    • /
    • 2023
  • The performance of underwater acoustic communication is greatly affected by multipath propagation and Doppler spread. This paper proposes a new communication technique, the Triangle Spread Carrier (TSC) technique, by modifying the existing Sweep Spread Carrier (SSC) technique that is strong in a multipath propagation environment. The proposed TSC technique is a form in which the up-chirp and down-chirp signals have repeated carriers, and each correlation function characteristic is used to estimate and correct the Doppler shift frequency of the receiving signal. To demonstrate the performance of the proposed TSC technique, we present the results of simulations using underwater channel simulators and sea trial conducted in the East Sea. When demodulating using only the estimated Doppler shift frequency as a result of the sea trial, the uncoded bit error rate was up to 0.194, but when the proposed method was applied, the uncoded bit error rate was reduced to 0.001.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

Audio Processing Algorithm Using Base Line Shift Method in Pulsed Doppler Systems (PW 도플러 시스템에서 Base Line 이동 기법을 이용한 오디오 신호 처리 방법)

  • 김기덕;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.275-281
    • /
    • 1999
  • Conventional PW Doppler systems suffer from the ambiguity of measured blood velocities due to the spectrum aliasing when the corresponding Doppler frequencies are greater than the Nyquist frequency. Base-line shift is a customary method for dealiasing the Doppler spectrums. I lowever, Doppler audio signals still remain unchanged even when the base-line shift method is applied. This paper de scribes an method for dealiasing both the Doppler spectra and audio signals by using sampling rate expansion, frequency shifting, and filtering poerations. For undirectional flows, the method can increase the maximum detectable Doppler frequency from the Nyquist limit of one-half of the Pulse Repetition Frequency(PRF) to the PRF. Experiments with real data have been performed to verify the proposed method.

  • PDF

A Study on the Doppler Compensation Technique of 2-Step Kalman Filter in Mobile Satellite Communication System (이동위성 통신 시스템에서 2단 칼만필터에 의한 도풀러 보상기법에 관한 연구)

  • 강희조;고봉진;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.166-176
    • /
    • 2000
  • In this paper, the LEO system signal degradation is mainly due to fading and doppler shift, so that the analysis of the signal degradation and compensation techniques are very important. This paper propose a Kalman filter based two step Automatic Frequency Control(AFC) to combat large and time variant frequency offset in low earth orbit satellite communication systems. The proposed Kalman AFC method estimates a frequency offset in two steps, I. e., coarse and fine estimations, extending the frequency acquisition range to even for than the symbol rate. Furthermore, it can track well a time variation of frequency offset. It is shown that the proposed compensator is able to compensate for doppler shift more than several KHz.

  • PDF

The Low Probability of Intercept RADAR Waveform Based on Random Phase and Code Rate Transition for Doppler Tolerance Improvement (도플러 특성 개선을 위한 랜덤 위상 및 부호율 천이 기반 저피탐 레이다 파형)

  • Lee, Ki-Woong;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.999-1011
    • /
    • 2015
  • In modern electronic warfare, RADAR is under constant threat of ECM(Electronic Counter Measures) signals from nearby jammers. The conventional linear frequency modulated(Linear-FM) waveform is easy to be intercepted to estimate its signal parameters due to its periodical phase transition. Recently, APCN(Advanced Pulse Compression Noise) waveform using random amplitude and phase transition was proposed for LPI(Low probability of Intercept). But random phase code signals such as APCN waveform tend to be sensitive to Doppler frequency shift and result in performance degradation during moving target detection. In this paper, random phase and code rate transition based radar waveform(RPCR) is proposed for Doppler tolerance improvement. Time frequency analysis is carried out through ambiguity analysis to validate the improved Doppler tolerance of RPCR waveform. As a means to measure the vulnerability of the proposed RPCR waveform against LPI, WHT(Wigner-Hough Transform) is adopted to analyze and estimate signal parameters for ECCM(Electronic Counter Counter Measures) application.

Technical Survey and Analysis of DSSS (직접대역확산방식 기술조사 및 분석)

  • Lim, You-Chol;Ma, Keun-Soo;Kim, Myung-Hwan;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2011
  • This paper is technical review about Direct Sequence Spread Spectrum(DSSS) to apply in launch vehicle system. First, we introduce communication protocol(carrier frequency, code length, process gain, data rate, chip rate etc) about several application system using DSSS. And then, we survey and summarize the effect of doppler shift to the DSSS. The doppler shift is important error factor for PN code tracking in the fast moving system like launch vehicle. So, spread spectrum code acquisition technique for a direct sequence system in the presence of doppler effect must be investigated.

An Improved Phase Estimation Method for AM Range Measurement System (진폭 변조 거리 측정 시스템에 적용 가능한 개선된 위상 추정 기법)

  • Kim, Dae-Joong;Oh, Taek-Hwan;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.453-461
    • /
    • 2012
  • This paper proposes an improved phase estimation method for AM(Amplitude Modulation) range measurement system. The previous phase estimation method induces errors by Doppler shift of a moving target. The proposed method compensates phase estimation error through the ADC(Adaptive Doppler Correction) to take the Doppler shift, thus can improve distance measurement accuracy. When compared with the previous method through simulation results, the Doppler shift compensation and accuracy are improved by 94.7% and 50%, respectively. Target distance error in an acoustic tank is estimated to be 7.7cm, which confirms that the proposed method can be used to estimate the distance in the marine environment.

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Characteristic Analysis on Feedback Interference Channels in Rural Regions and Sides of Highways (시외 지역과 고속도로변에서 궤환 간섭 채널의 특성 분석)

  • Moon, Woo-Sik;Seo, Man-Jung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.48-55
    • /
    • 2009
  • The feedback interference channels are those made through the multipaths that are built by moving and stationary objects around transmit and receive antennas mounted at the same point. This paper describes the method to measure the feedback interference channels in the rural regions and sides of highways and the analysis on channel characteristic parameters. Using the measured samples, we estimated scattering functions, delay power spectra, and Doppler power spectra, and we analyzed the channels using eight parameters including coherence bandwidth, coherence time, maximum excess delay, average excess delay, rms delay spread, Doppler shift, Doppler spread, and spread factor, and delay and Doppler cumulative distributions. Even though many observations are made, note that the feedback signals of high Doppler frequencies and large energy are observed in the sides of highways due to high speed vehicles while low Doppler frequencies occurred in the rural region due to rare traffic.