• 제목/요약/키워드: 도시 빅데이터

검색결과 198건 처리시간 0.026초

스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리 (Real-Time IoT Big-data Processing for Stream Reasoning)

  • 윤창호;박종원;정혜선;이용우
    • 인터넷정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.1-9
    • /
    • 2017
  • 스마트-시티는 스마트-시티의 사물인터넷(Internet of Things: IoT) 디바이스를 비롯한 수많은 인프라를 지능적으로 관리하고, 다양한 스마트 어플리케이션을 도시민에게 제공한다. 스마트-시티에서는 스마트-시티 어플리케이션에서 필요한 다양한 정보를 제공하기 위하여 수많은 사물인터넷 기기들로부터 끊임없이 발생하는 대규모의 스트림 빅-데이터를 지능적으로 처리하는 기능이 필요하다. 하지만, 스마트-시티에서 대규모의 스트림 빅-데이터를 처리하는 것에는 실시간 처리와 관련된 제약들이 존재한다. 본 스마트-시티-사업단에서는 선행 연구에서 스마트-시티미들웨어와 이를 이용한 스트림-리즈닝 방법론 및 시스템을 개발하였다. 스마트-시티에서 스마트 서비스를 제공하기 위하여, 스마트-시티-사업단에서는 스트림-리즈닝을 사용하는 방법론을 사용한다. 이 스트림-리즈닝은 대용량 데이터의 실시간 처리를 필요로 한다. 따라서, 후속연구로서 스마트-시티미들웨어의 클라우드-컴퓨팅 플랫폼을 이용하여 스트림-리즈닝을 위한 실시간 분산병렬처리 클라우드-컴퓨팅 방법론과 시스템을 개발하였다. 본 논문에서는 스마트-시티에서 발생하는 사물인터넷 빅-데이터를 스트림-리즈닝에 사용하기 위하여 이 후속연구에서 개발된 클라우드 기반 실시간 분산병렬처리 연구결과를 소개한다. 스마트-시티의 각종 센서들로부터 전송되어지는 사물인터넷 빅-데이터를 사용하여 스트림-리즈닝하는 데 필요한 클라우드-컴퓨팅 기반의 실시간 분산처리 방법론과 시스템을 소개하고 있으며, 이 방법론을 선행연구에서 개발한 스마트-시티 미들웨어에 구현하여 실시간 분산처리 성능을 평가한 것을 소개한다.

토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로 (Analysis of domestic and foreign future automobile research trends based on topic modeling)

  • 정호정;김건욱;김나경;장원준;정원웅;박대영
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.463-476
    • /
    • 2022
  • 과거 산업화 이후 자동차 산업은 내연기관 중심의 지속적인 성장을 하였으나, 최근 4차 산업혁명으로 큰 변화를 맞이하고 있다. 대다수의 기업들이 전기 자동차, 자율주행으로의 전환을 준비하고 있으며, 현시점에서 국내와 국외의 미래 자동차 연구동향을 비교 분석할 필요가 있다. 이에 본 연구에서는 미래 자동차 트렌드를 대표하는 CASE(Connectivity, Autonomous, Sharing, Electrification)와 관련된 키워드가 포함된 국내 4,002건, 국외 68,372건 논문을 수집하여 LDA 알고리즘 기반의 토픽모델링을 수행하였으며, 국내외 미래 자동차 연구동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 교통 인프라, 도시 내 교통효율, 교통정책 등과 같은 거시적인 측면에서의 연구가 주를 이루는 것으로 나타났으며, 국외는 객체인식, 사물인터넷, 전기자동차 소음 등의 차량기술과 관련된 연구가 활성화되고 있음을 확인할 수 있었다. 이를 통해 국내 공유자동차 부문에 있어 MaaS(Mobility-as-a-Service)와 관련한 정부의 기술지원이 필요하고 교통수단별 데이터 개방 필요성 등에 대하여 제시하였고, 이러한 분석결과는 미래 자동차 산업을 위한 기초자료로 활용될 수 있을 것으로 판단된다.

LDA 기법을 이용한 버스 승객의 잠재적 이동패턴 분석 (Latent mobility pattern analysis of bus passengers with LDA)

  • 조아;이경희;조완섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1061-1069
    • /
    • 2015
  • 최근 교통 분야에서 발생하는 교통 빅데이터 (교통카드 데이터, ATMS 데이터 등)의 분석결과를 교통 정책에 활용하는 사례가 늘어나고 있는 추세이다. 또한 교통 데이터 분석 기법을 기존의 단순 빈도 분석 기법에서 다양한 데이터 마이닝 기법으로 확장하여 교통 데이터 속에 숨어있는 의미를 파악하려는 연구도 진행되고 있다. 본 연구에서는 교통카드 데이터에 대하여 토픽모델링 기법 중의 하나인 LDA (Latent Dirichlet Allocation) 기법을 적용하여 청주시 버스 승객들의 이동패턴을 분석한다. 이를 위해 교통카드 데이터의 하차 결측치를 추정하고, LDA 기법을 적용하여 이동패턴을 추출하였다. 또한 LDA 분석으로 도출된 값을 측정값으로 하여 다차원적 분석을 함으로써 청주시 버스 승객들의 이동패턴 특징을 파악할 수 있다. 분석 결과, 청주시의 경우 크게 1) 시외지역에서 터미널을 이용해 청주시에서 유입되는 패턴, 2) 주거지역에서 상업지역으로 이동하는 패턴, 3) 청주 인근 학교에서 상업 지역 (청주 중심가)로 이동하는 패턴을 발견할 수 있었다. 이동패턴은 도시 계획, 대중교통서비스 향상, 버스 노선 신설 등 다양한 교통정책의 수립에 활용될 수 있을 것으로 기대된다.

빅데이터 분석을 통한 수원시 자전거 전용차로 도입 방안 (Planning Routes of Bicycle Lanes in Suwon City Using Big Data Analysis)

  • 김숙희;김형준;이남일
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.45-56
    • /
    • 2022
  • 최근 수원시 내 공유자전거 도입 및 이용이 활성화되고 있다. 이에 따라 자전거 도로 인프라가 확충되어야 함에도 불구하고, 그렇지 못한 상황이다. 따라서, 본 연구에서는 수원시 자전거 전용차로 도입 방안을 제시하고자 하였다. 이를 위해 모바이크에서 제공한 2018년 9월 10일~16일 기간 내 공유자전거 이용 데이터와 교통유발시설 현황 데이터를 기반으로 입지분석을 수행하였다. 분석결과를 활용하여 수원시 내 자전거 전용차로 도입 적정 구간을 선정하였다. 최종적으로 수원시 내 자전거 전용차로 우선 도입구간으로 총 2개, 5.6 km 구간을 선정하였다. 해당 구간들은 기존 자전거 도로 인프라 또는 교통유발시설과의 연계가 용이하고, 기운영중인 자전거 도로를 활용하여 설치가 용이하다는 장점이 있으나, 기존 도로공간 점유로 인한 교통정체가 발생하는 단점이 있음을 알 수 있었다. 본 연구를 통해 수원시 내 자전거 전용차로 도입 활성화 및 인프라 정비 사업 확대, 공유자전거 및 공유 PM 등 공유형 교통수단 이용 활성화, 관내 지속가능 도시교통체계가 구현되길 기대한다.

머신러닝기반 범죄발생 위험지역 예측 (Predicting Crime Risky Area Using Machine Learning)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • 우리나라의 시민들은 범죄에 대한 일반적인 사항만을 알 수 있을 뿐, 자신이 범죄위험에 얼마나 노출되어 있는지를 파악하기 어렵다. 경찰의 입장에서도 범죄발생 지역을 예측할 수 있다면 경찰력이 부족한 상황에서 효율성 있게 범죄에 대처 가능할 것이지만 아직 우리나라에서는 예측시스템이 없고, 관련 연구도 매우 부족한 실정이다. 이에 본 연구에서는 범죄발생 위험지역 예측 자동화 시스템 개발의 첫 번째 단계로 빅데이터로 구축 가능한 범죄정보와 도시지역 자료를 바탕으로 머신러닝 방식을 통해 한국형 범죄발생 위험지역 예측 모형을 개발하고자 한다. 또한 시나리오를 가정하여 범죄발생 확률을 지도로 시각화함으로써 사용자의 이해도를 높이도록 하였다. 선행 연구 및 사례에서 범죄발생에 영향을 미치는 요인 중 빅데이터로 구축 가능한 범죄정보, 날씨정보(기온, 강수량, 풍속, 습도, 일조, 일사, 적설, 전운량), 지역정보(평균 건폐율, 평균 용적율, 평균 높이, 총 건축물수, 평균 공시지가, 평균 주거용도면적, 평균 지상층수)를 머신러닝에 활용할 수 있도록 데이터를 사전 처리하였다. 머신러닝 알고리즘으로서 지도학습 모형 중 다양한 분야에서 활용되며 정확도가 높다고 알려진 의사결정나무모형, 랜덤포레스트모형, Support Vector Machine(SVM)모형을 활용하여 범죄 예측 모형을 구축하고 비교 분석하였다. 그 결과 평균 제곱근 오차(Root Mean Square Error, RMSE)가 낮아 예측력이 높은 의사결정나무모형을 최적모형으로 선정하였다. 이를 바탕으로 가장 빈번하게 발생하는 절도와 폭력범죄를 대상으로 시나리오를 작성하여 범죄 발생 위험지역을 예측한 결과, 사례도시 J시는 위험지역이 3가지 패턴으로 발생하는 것으로 나타났으며, 각각 발생확률을 3 등급으로 구분하여 $250{\times}250m$ 단위의 지도형태로 시각화할 수 있었다. 본 연구는 향후 자동화 시스템으로 개발하여 시시각각으로 변하는 도시 상황에 따라 실시간으로 예측 결과를 시각화하여 제공함으로써 보다 범죄로부터 안전한 도시환경 조성에 기여하고자 한다.

비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 - (Drought evaluation using unstructured data: a case study for Boryeong area)

  • 정진홍;박동혁;안재현
    • 한국수자원학회논문집
    • /
    • 제53권12호
    • /
    • pp.1203-1210
    • /
    • 2020
  • 가뭄은 다양한 수문학적 또는 기상학적 인자들이 복합적으로 작용하여 발생하기 때문에 가뭄의 사상을 정확히 평가하는 것은 어려운 일이나, 이를 정량적으로 해석하기 위해 다양한 가뭄지수들이 개발되어 왔다. 하지만 현재 활용중인 가뭄지수들은 단일변량의 부족량을 통해 산정되며, 복합적인 원인으로 발생하는 가뭄의 사상을 정확히 판단하지 못하는 문제가 있다. 단순 단일변량의 부족을 가뭄이라고 판단하기는 어렵기 때문이다. 최근에는 빅데이터 분석에서 많이 활용되고 있는 비정형 데이터를 활용하여 지수를 개발하는 연구들이 타 분야에서 진행되고 있으며 우수성이 입증되고 있다. 따라서 본 연구에서는 기존 가뭄지수에 활용 중인 기상 및 수문정보(강수량, 댐 유입량)에 각각 비정형 데이터(뉴스데이터)를 결합하여 가뭄지수를 산정하고, 산정된 가뭄지수의 검증을 통해 가뭄해석의 활용성을 평가하고자 한다. 결합가뭄지수 산정을 위해 Clayton Copula 함수를 활용하였으며, 매개변수 추정은 교정방법을 이용하였다. 분석결과, 기존의 가뭄지수(SPI, SDI)보다 비정형 데이터를 결합한 가뭄지수가 가뭄기간을 적절히 재현하는 것으로 나타났다. 또한 Receiver Operating Characteristic (ROC) score가 기존의 가뭄지수들보다 높게 산정되어 가뭄해석에 있어 활용성이 우수하였다. 본 연구에서 산정된 결합가뭄지수는 기존 단일변량 가뭄지수의 해석적 한계를 보완하고 비정형데이터를 활용한 가뭄지수의 활용성이 우수하다는 점에서 활용성이 높다고 판단된다.

빅데이터 기반 공유형 마이크로 모빌리티의 주차시설 입지 최적화 연구 (Optimizing Locations for Micro-mobility Parking Area based on User Big-data Analysis)

  • 최낙현;김정화
    • 대한토목학회논문집
    • /
    • 제43권2호
    • /
    • pp.195-206
    • /
    • 2023
  • 최근 마이크로 모빌리티는 비대면 사회에서 라스트 마일을 이용하는데 유용한 교통수단으로 정의되고 있지만, 현재 주차방식을 비고정형으로 채택하고 있어 교통수단이 가지는 장점보다는 단점이 더 부각되고 있다. 본 연구는 마이크로 모빌리티의 주차방식을 비고정형에서 고정형으로 전환하면서 필요한 주차장 입지를 공학적 분석을 통해 마이크로 모빌리티의 주차문제 해결에 목적이 있다. 마이크로 모빌리티 주차장의 최적 개수 및 위치를 도출하기 위해서 입지선정모형인 MCLP 모형을 사용하였다. MCLP 모형 적용의 대상지는 분당 1기 신도시로 현실적인 공유 전동킥보드의 수요에 대응하는 최적입지 도출을 위해 실제 이용 데이터를 수집하여 반영하였으며, 최적입지에 시간대별 이용 수요를 반영하기 위해 커버 범위, 수요, 시간대별로 모형을 적용 및 분류하였다. 분석 결과, 커버 범위를 400 m로 적용하였을 때 최적 주차시설의 개수는 146개로 현재 마이크로 모빌리티의 수요가 99.83 % 커버되어 주차문제 해결에 적절한 커버 범위로 나타났다. 또한, 공유 전동킥보드의 이용 수요를 4개의 수준, 시간대를 3개의 수준으로 분류하고 교차하여 도출된 마이크로 모빌리티의 주차장을 총 12개의 유형으로 분류하였다. 이러한 주차장 유형의 분류는 향후 마이크로 모빌리티 주차시설의 설치 및 운영에 있어 전략적인 정책 제안이 가능할 것이다.

미래도시 전망 분석 (An Analysis on the Expert Opinions of Future City Scenarios)

  • 조성수;백효진;한정훈;이상호
    • 지역연구
    • /
    • 제35권3호
    • /
    • pp.59-76
    • /
    • 2019
  • 본 연구의 목적은 미래도시의 모습을 시나리오로 만들고, 델파이 분석을 통해 미래도시 변화의 시기와 실현 가능성을 분석하는 것이다. 미래도시 시나리오는 빅데이터 분석과 환경스캐닝 기법, 문헌연구를 통해 도시구조, 토지 이용, 교통 및 인프라, 도시개발로 도출되었다. 델파이는 우리나라와 미국, 영국, 호주, 일본, 중국, 인도 등 6개국 24명의 전문가를 통해 진행되었다. 델파이 구조는 시나리오의 실현 가능성을 리커트 5점 척도로 전망할 수 있도록 구성하였으며, 실현 시기를 근미래(10년 이하), 중미래(10~20년), 먼미래(20년 이상)로 설정하였다. 연구의 분석결과는 다음과 같다. 첫째, 도시구조는 단기적으로 수위 및 광역 대도시(Global and Mega-City)를 중심으로 집중되며, 중장기적으로 지방 중소도시는 쇠퇴할 것으로 전망되었다. 둘째, 토지 이용은 근미래에 수직적, 수평적으로 혼합될 것이며, 공유 공간이 증가될 것으로 예측되었다. 셋째, 교통 및 인프라는 ICT 기반의 통합 플랫폼을 통한 도시관리가 진행되며, 스마트 기술을 통해 공공 및 개인(민간) 교통이 활성화될 것으로 분석되었다. 넷째, 도시개발은 교통 결절지(TOD) 중심의 개발이 활성화될 것이며, 에너지 및 환경 분야에 중점을 둘 것으로 전망되었다.

텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립 (Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining)

  • 오창석;이용택;고민수
    • 한국ITS학회 논문지
    • /
    • 제15권6호
    • /
    • pp.10-23
    • /
    • 2016
  • 본 연구는 빅데이터를 활용하여 감사 시 유의해서 살펴보아야 할 ITS 관련 정책이슈 탐색방법 개발 및 적용을 목적으로 한다. 이를 위해 본 연구에서는 William Dunn이 제안한 경계분석을 이론적 토대로 하여, 여기에 감사원 감사실무 프로세스를 접목한 감사이슈 분석 틀을 제안했다. 그리고 이 분석 틀을 전산으로 구현하기 위해 메타문제를 추정하는 개념이 경계분석과 유사한 텍스트마이닝 기법을 응용했다. 텍스트마이닝의 구체적 모형은 David Blei가 제안한 Latent Dirichlet Allocation(LDA) 모형을 기반으로 하는 비대칭-대칭 혼합 어휘소 기반 LDA를 응용했다. 사례분석 결과, 경찰청에서 운영하는 도시교통정보시스템의 교통정보 수집률 저조와 국토교통부의 첨단교통관리시스템과의 중복 문제, 디지털 운행기록계의 주행거리 조작 등이 주요 이슈로 도출됐다.

토픽모델링과 시계열 회귀분석을 활용한 헬스케어 분야의 뉴스 빅데이터 분석 연구 (Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis)

  • 김은정;장석권;이상용
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.163-177
    • /
    • 2023
  • 본 연구는 디지털 헬스케어 산업 활성화를 위한 정책적 접근으로서, 주요 의제 도출 및 정책적 시사점을 제시하는데 목적이 있다. 본 연구에서는 10년(2013년~2022년) 간의 헬스케어와 관련된 뉴스 빅데이터 총 91,873건을 수집하여 토픽모델링 분석, 다차원척도 분석 및 시계열 회귀분석을 수행하였다. 토픽모델링 분석 및 다차원척도법을 통해 총 20개의 토픽을 도출하여 2차원선상에 토픽들의 군집 형태를 파악하였고, 시계열 회귀분석을 통해, 상승 추세를 나타내는 4개의 Hot topic(건강관리, 바이오제약, 기업매출·전망, 정부·정책)과 하향 추세를 나타내는 3개의 Cold topic(스마트기기, 주식·투자, 도시·건설)을 도출되었다. 본 연구의 결과는 우리나라 정책을 수립하는 정부 기관에 중요한 기초 자료로 활용될 수 있을 것이다.