There are two ways to assess data quality : measurement of data itself and assessment of data quality management process. Recently maturity assessment of data quality management process is used to ensure and certify the data quality level of an organization. Following this trend, the paper presents the process reference model which is needed to assess data quality management process maturity. First, the overview of assessment model for data quality management process maturity is presented. Second, the process reference model that can be used to assess process maturity is proposed. The structure of process reference model and its detail processes are developed based on the process derivation approach, basic principles of data quality management and the basic concept of process reference model in SPICE. Furthermore, characteristics of the proposed model are described compared with ISO 8000-150 processes.
최근 기업의 각 업무가 정보화 되면서 부문별, 업무별 정보시스템의 데이터 간에 심각한 중복성과 불일치성의 문제가 대두되면서 데이터 품질관리에 관심이 집중되고 있다. 본 연구는 실제로 데이터 표준 관리와 데이터 요구사항 관리를 통매 데이터 품질 관리 프로세스를 개선한 사례를 제시함으로써 데이터 품질 향상을 위해 노력하는 타 기업들에게 도움을 주고자 하였다. 또한, 개선된 데이터 품질 관리 프로세스에 대한 다차원적인 평가로서 데이터 품질, 생산성, 고객만족도, 조직 및 문화의 측면에서 정성 적이고 정량적인 지표를 통한 개선효과를 살펴보고 평가함으로써 제안된 프로세스에 의해 품질수준이 향상되었음을 검증하였고 평가 분석을 통한 시사점을 도출하였다.
As electronic commerce becomes more common and the data volume of e-catalog increases, a systematic approach to data quality management is being required. Upon the necessity, we propose a process-based framework for e-catalog data quality management. This is the methodology for data management and improvement activities continuously performed to satisfy the expectation of industry to e-catalog systems. In the framework, contents for quality management consist of data, quality management items, and quality management processes. These are again subdivided according to organization levels, i.e, user, data administrator, and chief information officer.
데이터 품질 기준은 반드시 현업의 입장에서 바라봐야 하며, 현업의 마인드가 데이터 품질에 가장 결정적인 영향을 미친다. 이에 따라 데이터 품질을 향상시키기 위해서는 현업이 데이터 품질 관리에 직접 참여할 수 있는 연구가 필요하다. 본 연구에서는 데이터 값(Data Value)에 대한 데이터 오너 (Owner)를 부여하여 데이터 품질 오류 시 현업이 직접 데이터 품질 관리 프로세스에 참여 할 수 있는 방안을 제시하였다. 데이터 품질 관리 프로세스는 데이터 품질 대상 및 기준을 정의하고 측정, 분석, 개선하는 방법이다. 본 연구에서 제시한 데이터 오너 관리 방안은 보다 효율적인 데이터 품질 관리 프로세스를 개선 시킬 수 있을 것이다.
Journal of the Korean Society for information Management
/
v.40
no.1
/
pp.51-71
/
2023
This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.
The time to market and productivity of embedded system needs a quality measurement process management of embedded software. But, defect management without preemptive analysis or prediction is not useful for quality measurement process management. This subject is focused on the defect that is one of the most important attributes of software measure in the process. Defining of defect attribute and quality measurement process management is according to understanding of embedded sw characteristics and defect data. So, this study contributes to propose the good method of the quantitative based on defect management in the test phase of sw lifecycle.
Kim, Sunho;Lee, Changsoo;Chung, Seungho;Kim, Hakcheol;Lee, Changsoo
Informatization Policy
/
v.22
no.1
/
pp.28-46
/
2015
Although the demand for the use of public data increases in accordance with the expansion of Government 3.0, the poor level of data quality and its management currently implemented is becoming obstacles to opening data to the public. To improve the efficiency of management, linkage and usage for data, standardized processes for data quality management have to be prepared and appropriate data quality assessment criteria should be established. In this paper, we propose the organizational maturity model that can assess the public data quality management level. This model consists of the process reference model and the measurement framework. Fifteen processes grouped by the PDCA cycle are defined in the process reference model. The measurement framework measures the organizational maturity level based on process capability levels. The organizational maturity model can be used to establish objectives and directions for public data quality improvement by diagnosis of current level of public data quality management and problem solving. This model can also facilitate open to the private sector and activate usage of stable public data through reliability enhancement.
Recently, as most functional business activities in an enterprise are supported by computerized information systems, data duplication and inconsistency among functional information systems become serious problems. It brings people to have many interests on data quality management. This paper presents a case study in which a company had improved their data quality by enhancing their data quality management processes. Though the case study, we describe main issues and risk factors in the process of data quality improvement projects as well as solutions to resolve the issues, which can be referred by other companies who pursue data quality improvement. Also, the improvement effects are evaluated by multidimensional perspectives which include quantitative and qualitative measures on data quality, productivity, customer satisfaction, organization, and culture.
The Korean government developed an organizational maturity model for public data quality management based on international standards to evaluate the data quality management level of public organizations, However, as the model has too many indicators to apply on the site, a new model with reduced number of indicators is proposed in this paper. First, the number of processes is reduced by integrating and modifying the processes of the previous model. Second, a new maturity evaluation method is proposed based on capability levels focused on the activity, not on the process. Third, the maturity level of public data quality management is represented by five discrete levels or real values of 1 through 5. Finally, characteristics of the proposed model are compared with those of the previous model.
As data exchange between business partners in e-business becomes more active, obtaining and managing reliable data is emerging as a pressing issue for corporations and organizations. For the resolution of data quality, this paper proposes a framework for data quality management with its scenario. The data quality management framework consists of three phases: data quality monitoring, data quality improvement and data application, each of which has three processes. In each process, necessity, functions, roles, and relationships among processes are specified. In order for users to directly apply the framework to the business field, a business scenario is given with examples of product identification and classification code systems widely used in e-business.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.