최근 GIS 시스템, 위성사진, 원격 탐사 시스템과 같은 다양한 응용 시스템으로부터 수집된 방대한 양의 공간 데이터에서 지식을 발견하는 공간 데이터 마이닝에 대한 관심이 더욱 높아지고 있다. 기존의 공간 데이터마이닝에 대한 연구들은 방대한 비공간 데이터들의 지식을 효율적으로 탐사하고자 하였다. 그러나 기존의 시스템은 발견된 지식의 효과성을 보장하지 못하는 문제점을 가진다. 따라서 본 논문은 공간 데이터 타입을 포함하는 대용량의 데이터들로부터 효과성을 보장하는 특성화 지식 탐사시스템을 제안한다. 본 논문에서 제안하는 공간 특성화 지식 탐사시스템은 밀도 기반의 클러스터링 기법을 적용하여 탐사된 특성화 지식의 효과성을 높였다.
최근 유비쿼터스 컴퓨팅의 관심이 증대되면서, 방대하고 다양한 형태의 데이터에 대한 효율성과 효과성을 고려한 지식 탐사방법연구의 필요성이 제기되었다. 기존의 지식 탐사방법에 대한 연구들은 방대한 비공간 데이터들의 지식을 효율적으로 탐사하고자 하였다. 그러나 기존의 연구는 탐사된 지식의 효율성안을 고려하여 유용한 지식탐사를 보장하지 못하는 문제점을 가진다. 따라서 본 논문은 공간 데이터 타입을 포함하는 대용랑의 데이터들로부터 효과성을 보장하는 특성화 지식 탐사방법을 제안한다. 본 논문에서 제안하는 특성화 지식 탐사기법은 공간 및 비공간 데이터들의 특성을 나타내는 요약된 지식을 제공하며, 밀도 기반의 클러스터링 기법을 적용하여 특성화 지식 탐사의 효과성을 높인다.
하천에서 유사 및 오염물질의 이동을 예측하기 위하여 초점을 두는 것에는 두 가지 요소가 있다. 입자의 농도로 나타낼 수 있는 양의 개념과 입자의 위치로 나타낼 수 있는 공간의 개념이 그것이다. 유사 입자와 같이 그 비중이 물보다 큰 경우, 흐름 내에서 침전과 부상의 메커니즘을 반복하게 되는데 최종적으로 바닥에 침적하는 위치는 하상변동, 서식처 등 하천관리의 다양한 측면에서 매우 중요하다. 유사 입자가 바닥에 침적하는 위치를 예측하는 데에는 난류와 지형 같은 많은 불확실한 요소가 내포되어 있어, 같은 크기의 유사 입자라 하여도 하나의 exact point로 도달하지 않는다. 이러한 불확실한 요소를 고려하여 침전 위치를 산정하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 침전 위치를 확률밀도함수로 나타내어 분석하고자 한다. 입자의 침전 위치를 확률밀도함수로 나타내기 위하여 입자 기반의 추적 모형을 사용하여 위치 데이터를 얻었으며, 이를 실험데이터와 비교하여 검증 후 확률밀도함수로 나타내었다. 그 결과 입자의 침적 위치에 대한 확률밀도함수는 로그정규분포를 띠고 있음을 확인하였으며, 확률밀도함수를 나타내는 매개변수를 물리 기반 회귀모형식으로 일반화 하여 나타낼 수 있었다.
고속도로의 교통혼잡을 관리하기 위해서는 근본적으로 혼잡지점 상류부의 진입교통량을 제어해야 한다. 이를 위한 효과적인 램프미터링 운영전략이나 고속도로 교통정보제공방안을 수립하기 위해서는 혼잡영향권(대기행렬길이)에 관한 신뢰성 있는 데이터가 반드시 필요하다. 고속도로의 대기행렬길이를 산정하기 위해 일반적으로 충격파이론과 Queueing이론을 제시하고 있다. 그러나, 기존의 충격파 이론을 포물선형의 교통량-밀도관계식을 근거로 하고 있어 충격파간에 발생하는 부수적인 충격파를 해석하는 과정이 수학적으로 불가능하여 실질적인 목적으로 사용할 수 없음은 이미 잘 알고 있는 사실이다. 최근에 이러한 한계를 극복할 수 있는 새로운 방법으로 교통량 밀도간의 관계식을 삼각형으로 가정하고 교통량 대신에 누적교통량을 사용하는 Simplified Theory of Kinematic Waves In Highway Traffic이 개발(Newell, 1993)되었지만, 이 방법을 적용하기 위해서는 기본적으로 대상 고속도로 구간의 교통량-밀도관계식을 규명해야 하는 어려움이 있다.(사실 실시간으로 밀도데이터를 수집하기란 불가능하다.) Queueing이론에서 제시하는 대기행렬은 모두 대기차량이 병목지점에 수직으로 정렬하여 도로를 점유하지 않는 Point Queue(혹은 Vertical stack Queue)로서 실제로 도로상에 정렬된 대기행렬(Real Physical Queue)과는 전혀 다르다. 이미 입증된 바 있어, Queueing이론을 이용함은 타당성이 없다. 이러한 사실에 근거하여 본 연구는 고속도로 대기행렬길이를 산정할 수 있는 모형개발을 위한 기초연구로서 혼잡상태의 연속류 특성을 분석하는데 목적이 있다. 이를 위해, 본 연구에서는 서울시 도시고속도로에서 수집한 실제 데이터를 이용하여 진입램프지점의 혼잡상태에서 대기행렬의 증가 또는 감소하는 과정을 분석하였다. 주요 분석결과는 다음과 같다. 1. 혼잡초기의 대기행렬은 다른 혼잡시기에 비해 상대적으로 급속한 속도로 증가함. 2. 혼잡초기의 대기행렬의 밀도는 다른 혼잡시기에 비해 비교적 낮음. 3. 위의 두 결과는 서로 관계가 있으며, 혼잡시 운전자의 행태(차두간격)과 혼잡기간중에도 변화함을 의미함. 4. 교통변수 중에서 대기행렬길이를 산정하는데 적합한 교통변수를 교통량과 밀도로 판단됨. 5. Queueing이론에서 제시하는 대리행렬길이 산정방법인 대기차량대수$\times$평균차두간격은 대기행렬내 밀도가 일정하지 않아 부적합함을 재확인함. 6. 혼잡초기를 제외한 혼잡기간 중 대기행렬길이는 밀도데이터 없이도 혼잡 상류부의 도착교통량과 병목지점 본선통과교통량만을 이용하여 추정이 가능함. 7. 이상에 연구한 결과를 토대로, 고속도로 대기행렬길이를 산정할 수 있는 기초적인 도형을 제시함.
최근 데이터 경제가 가속화되면서 경영학 분야에서는 데이터 매칭이라는 새로운 기법이 주목받고 있다. 데이터 매칭은 모집단이 같지만 서로 다른 표본에서 수집된 데이터셋을 합치는 기법 또는 처리 과정을 의미한다. 그중에서 통계적 매칭은 서로 다른 데이터를 결합하는데 있어서 사업자 번호와 같이 기준이 되는 변수가 없는 경우 통계적 함수를 활용하여 데이터를 매칭하는 방법이다. 선행연구 검토결과 경제학, 교육학, 보건, 의료 등 다양한 분야에서 통계적 매칭이 많이 사용되고 있는데 반해 경영학 분야는 제한적임을 확인할 수 있었다. 본 연구는 기존 경영학 분야에서 충분히 연구되지 않았던 통계적 매칭의 유용성을 검증하고 활용도를 높이는 방안을 연구하고자 한다. 연구목적을 달성하기 위해 본 연구에서는 2020 벤처기업정밀실태조사와 2020 한국기업혁신조사 자료를 활용하여 통계적 매칭 시뮬레이션을 수행하였다. 먼저, 선행연구를 바탕으로 통계적 매칭에 사용되는 변수를 선정하였다. 공통변수는 업종, 종업원수, 지역, 업력, 상장시장, 매출로 설정하였고, 검증을 위한 고유변수와 제공변수는 중소기업 혁신에서 가장 중요한 연구인력 비율과 R&D 비용으로 각각 설정하였다. 사전 검증을 위해 2020 벤처기업정밀실태조사 자료를 수여자 데이터 30%와 기여자 데이터 70%로 분할하였다. 통계적 매칭에는 마할라노비스 거리와 랜덤 핫덱을 결합한 방식을 사용하였고, 성능평가는 수여자 데이터와 원시 데이터의 평균값 비교와 커널 밀도 함수(Kernel Density Estimation)를 통해 데이터 분포를 비교하였다. 검증결과, 수여자 데이터 30%와 기여자 데이터 70%에서 추출된 매칭 데이터의 평균값이 통계적으로 유의한 차이가 없는 것으로 나타나 유사한 데이터가 매칭된다는 것을 확인하였다. 또한, 두 데이터의 커널 밀도 함수로 도출한 데이터 분포 역시 유사한 형태가 나타나는 것을 확인할 수 있었다. 사후 검증에는 2020 벤처기업정밀실태조사에서 임의로 30%를 수여자 데이터로 추출하고 2020 한국기업혁신조사 자료를 기여자 데이터로 설정하여 통계적 매칭을 수행하고 검증하였다. 사전 검증과 마찬가지로 공통변수는 업종, 종업원수, 지역, 업력, 상장시장, 매출로 설정하였고, 검증을 위한 고유변수는 연구 인력 비율과 R&D 비용으로 정의하였다. 분석 결과, 수여자 데이터의 연구인력 비율의 평균과 기여자 데이터의 평균은 예상과 다르게 통계적으로 차이가 있는 것으로 나타났다. 하지만 커널 밀도 함수에 따른 두 데이터의 분포는 유사한 형태를 보이는 것으로 조사되어 통계적 매칭의 적절성을 확인할 수 있었다. R&D 비용은 통계적 매칭 수행 결과, 수여자 데이터의 R&D 비용 평균과 기여자 데이터의 평균이 통계적으로 차이가 없었고, 커널 밀도 함수도 유사한 분포를 보이는 것으로 조사되었다. 이러한 결과는 모집단은 동일하지만 서로 다른 표본에서 수집된 자료를 통계적으로 결합하여 신뢰할 수 있는 새로운 데이터를 확보할 수 있다는 측면에서 큰 의의가 있다. 또한, 경영학 분야에서 많이 사용되지 않았던 데이터 매칭 방법론을 모의실험을 통해 타당성을 검증함으로써 연구용 데이터 확보와 연구방법론의 확장에 기여했다는 점에서 시사점을 가진다.
머신러닝(ML, Machine Learning)기반 응용에서의 인식성능은 적용된 모델의 종류와 크기, 학습환경 및 학습에 사용되는 데이터 등 다양한 요인에 따라 결정된다. 특히 학습에 사용되는 데이터가 충분치 않을 경우 인식성능이 저하되거나 과적합(Overfitting)등의 문제가 발생하기도 한다. 이미지 인식을 주요 대상으로 하는 기존 연구들은 학습을 위한 데이터셋이 풍부하고 검증된 데이터셋을 사용하여 학습 및 인식성능을 평가할 수 있다. 하지만 사용된 센서, 인식의 대상, 인식 상황이 다른 특정 응용들의 경우 데이터셋을 직접 구축해야 한다. 이런 경우, ML모델의 성능은 데이터의 양과 품질에 따라 달라진다. 본 논문에서는 이용 가능한 학습용 데이터가 충분치 않은 움직임 인식응용에 효율적으로 사용될 수 있는 비모수 추정 방식의 일종인 커널 밀도 추정 알고리즘을 사용하여 학습용 데이터를 증폭한 후, 사용된 커널의 종류에 따라, 원본 데이터의 수 및 증폭 비율에 따라 증폭된 데이터가 원본 데이터의 특징을 잘 반영하는지 인식 정확도 변화를 토대로 비교 분석한다. 실험결과, 본 연구에서 사용한 움직임 인식응용에서는 좁은 대역폭을 가진 Tophat 커널로 증폭된 데이터셋에서 최대 14.31%의 인식 정확도 향상을 확인하였다.
공간 데이터마이닝 분야에서 객체간의 거리, 연결성, 상대적인 밀도를 기반으로 비슷한 객체들을 하나의 그룹으로 묶는 공간 클러스터링은 중요한 컴포넌트이다. 공간 클러스터링 알고리즘은 밀도 기반 클러스터링과 격자 기반 클러스터링 알고리즘 등으로 나눌 수 있다. 밀도 기반 클러스터링 알고리즘은 다양한 모양과 크기의 클러스터를 구분할 수 있으며, 잡음을 제거할 수 있는 장점을 가지고 있는 반면에, 격자 기반 클러스터링 처리속도가 빠르다는 장점을 가지고 있다. 하지만, 대량의 공간 데이터 집합을 클러스터링 하는 것은 데이터 처리 비용이 급격하게 증가하기 때문에 클러스터링 처리 결과에 큰 영향을 준다. 본 논문은 대용량의 공간 데이터베이스에서 공간 객체간의 고밀도 영역을 식별하여 잡음을 제거하기 위한 수치데이터 값과 기본 격자간격 개수를 정의하는 확장된 밀도-격자 기반 클러스터링 알고리즘을 제안한다. 제안 알고리즘은 고밀도 영역 식별을 위하여 threashold(DT)를 정의하였으며, 격자 및 밀도 기반 기법의 장점을 이용하여 임의의 객체 클러스터링을 식별할 수 있는 성능을 향상시켰다. 성능평가에서 기존의 클러스터링 알고리즘과의 다양한 비교 평가 실험을 통하여, 제안 알고리즘이 빠르고 정확한 데이터 클러스터링 결과를 나타냄을 보인다.
기존의 버스트 모드 자동전력제어 회로는 저 전력과 단일 칩화에 적합한 효율적인 구조인 반면에 데이터 율(data rate)이 높아짐에 따라 영의 밀도(zero density) 영향을 심하게 받아 에러를 야기하였다. 본 논문에서는 더블 게이트 MOS와 MOS다이오드를 이용하여 주입전류의 불균형을 보상하는 할 수 있는 새로운 구조의 첨두 비교기를 고안하고 이를 자동전력제어 회로에 적용하여 높은 데이터 율에서도 영의 밀도 변화에 강한 버스트 모드 자동전력제어 회로를 제안하였다. 제안한 자동전력제어 회로 내의 첨두 비교기는 높은 데이터 율에서 영의 밀도 변화에도 불구하고 정확한 전류비교 기준점을 견지하며 에러 없이 정상동작 하였다. 또한 제안한 첨두 비교기는 저전력 구조이고 대용량의 커패시터가 사용되지 않아 단일 칩화에도 적합하였다.
기존의 버스트 모드 자동전력제어 회로는 데이터 율이 증가함에 따라 마크밀도 변화 영향을 심하게 받아 에러를 야기하였다. 이 문제를 해결하기 위해 높은 데이터 율에서도 마크밀도의 영향을 배제시킬 수 있는 새로운 구조의 첨두 비교기를 고안하고 이를 자동전력제어 회로에 적용하여 마크밀도 변화에 강한 버스트 모드 자동전력제어 회로를 제안하였다. 제안한 자동전력제어 회로 내의 첨두 비교기는 높은 데이터 율에서 뿐만 아니라 광범위한 기준전류 및 차 전류 변화에서도 미소한 마크밀도 변화 영향만을 보여 마크밀도 변화에 매우 강한 특성을 확인 할 수 있었다.
클러스터링은 대표적인 비교사 학습 방법의 하나로 균일한 특성을 가지는 데이터를 클러스터로 묶기 위해 사용된다. 하지만 클러스터링은 기본적으로 클러스터의 중심에서 데이터까지의 거리에 기반하고 있으므로 클러스터의 중심이 밀도가 높은 클러스터 쪽으로 쏠리는 현상이 발생한다. 이 논문에서는 클러스터의 중심을 가능한 멀리 떨어져 있도록 하는 항을 Fuzzy C-Means의 목적함수에 추가함으로써 클러스터 사이의 밀도 차이가 심한 데이터의 클러스터링 문제에서 정확한 결과를 얻을 수 있는 클러스터링 방법을 제안한다. 제안한 방법은 FCM에 비해 실제 클러스터 중심으로 수렴하는 경우가 더 많으며 수렴 속도 역시 FCM 보다 빠른 것을 실험 결과를 통해 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.