테이블은 행과 열로 이루어진 데이터 집합으로, 핵심 정보를 효율적으로 저장하고 표현하기 위해 널리 사용된다. 테이블을 활용하는 다양한 연구 중에서도 테이블 검색은 다른 테이블 관련 연구의 선행 모듈로서 기능하기 때문에 특히 중요하다. 그러나 테이블 검색을 위한 한국어 데이터셋이 전무하여 이에 관한 연구를 수행하기 어렵다. 본 논문은 이러한 문제를 해결하고자 공개된 테이블 질의응답 데이터셋으로부터 테이블에 할당된 질의를 재구성하는 방법을 통해 테이블 검색 데이터셋을 구축한다. 추가로, 검증 모델을 통해 구축된 데이터셋의 유효성을 확인한다.
웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
IoT 기기의 보급 및 확산으로 많은 산업군에서 이를 바탕으로 시계열 데이터를 획득하고 분석하려는 시도가 확대되고 있다. 시간의 흐름에 따라 저장된 데이터들은 주기에 따라 특정 패턴을 갖는 경우가 많으며 이러한 패턴을 파악한다면 주요 산업군의 의사 결정에 도움이 된다. 그러나 IoT 기기의 수집 오류 및 네트워크 환경에 의해 대부분의 시계열 데이터들은 누락 데이터, 이상 데이터를 갖고 있으며 이를 처리하지 않고 분석할 경우 오히려 잘못된 결과를 초래한다. 본 논문에서는 패턴 파악을 위해 '시간, 일, 주, 월, 년' 등 시간의 주기를 기준으로 데이터를 분할하며 이에 기반하여 데이터셋을 재구성하고 활용 가능한 데이터와 불가능한 데이터로 구분한다. 선별된 데이터셋은 클러스터링에 적용하였으며, 제안하는 방법을 적용할 경우 주기를 갖는 시계열 데이터를 활용하는 분석 및 학습에서 더 나은 결과를 보임을 확인하였다.
SMS는 현대 통신 수단 중 가장 많이 사용되고 있는 방법 중 하나로서, 그 사용 비용이 저렴해짐에 따라 SMS에서의 스팸도 함께 증가하였다. SMS 스팸을 탐지하는 연구들은 부득이하게 사용자의 발신번호, 수신번호 및 SMS내용 등의 즉 개인정보를 필요로 하게 된다는 점에서 데이터 수집 측면에서 큰 한계를 가지고 있다. 더욱이, 소셜 네트워크가 활성화됨에 따라 SMS 스팸들은 더욱 지능화되고 있으며 결과, SMS 스팸 탐지 기법 연구 수행시 해당 SMS관련 개인정보는 물론 사용자의 소셜 네트워크 관련 정보까지 필요로 한다. 따라서, 본 논문에서는 SMS 스팸을 탐지하기 위해 필요한 소셜 네트워크 데이터 셋을 사생활 침해 문제 없이 실제와 유사하게 재구성해주는 SBSS(Social network Building Scheme for SMS spam detection) 기법을 제안한다. 또한, 현재 존재하는 SMS 스팸의 공격 유형을 처음으로 구체화하고 분류하여 이를 반영했다.
오토인코더 딥러닝 모델은 이상 데이터도 정상 데이터로 복원하는 능력이 우수하여 이상탐지에 적절하지 못한 경우가 발생한다. 그리고 데이터의 일부를 가린(마스킹) 후 가린 데이터를 복원하는 방식인 Inpainting 방식은 잡음이 많은 이미지에 대해서는 복원능력이 떨어지는 문제점을 가지고 있다. 본 논문에서는 MLP-Mixer 모델을 수정·개선하여 이미지를 일정 비율로 마스킹하고 마스킹된 이미지의 압축된 정보를 모델에 전달해 이미지를 재구성하는 방식을 사용하였다. MVTec AD 데이터 셋의 정상 데이터로 학습한 모델을 구축한 뒤, 정상과 이상 이미지를 각각 입력하여 재구성 오류를 구하고 이를 통해 이상탐지를 수행하였다. 성능 평가 결과 제안된 방식이 기존의 방식에 비해 이상탐지 성능이 우수한 것으로 나타났다.
수집된 대량의 데이터셋이 딥러닝 학습데이터로 사용되기 위해서는 주민번호, 질병 정보등과 같이 민감한 개인정보는 해커에게 노출되지 않도록 값을 변경하거나 암호화해야 하고 구축된 딥러닝 모델의 구조와 일치 하도록 데이터를 재구성 해주어야 한다. 현재, 이러한 작업은 전문가에 의해 수동으로 이루어지기 때문에, 시간과 비용이 많이 소요 된다. 이러한 문제점을 해결하기 위해, 본 논문에서는 딥러닝 과정에서 개인정보 보호를 위한 데이터 처리 작업을 자동으로 수행할 수 있는 기법을 제안한다. 제안된 기법에서는 데이터 일반화에 기반한 개인정보 보호 작업을 수행하고 원형큐를 사용하여 데이터 재구성 작업을 수행한다. 제안된 기법의 타당성을 검증하기 위해, C언어를 사용하여 직접 구현하였다. 검증 결과, 데이터 일반화가 정상적으로 수행되고 딥러닝 모델에 맞는 데이터 재구성이 제대로 수행됨을 확인 할 수 있었다.
표준화되지 않은 의료 데이터 수집 및 관리는 여전히 수동으로 진행되고 있어, 이 문제를 해결하기 위해 딥 러닝을 사용해 CT 데이터를 분류하는 연구들이 진행되고 있다. 하지만 대부분 연구에서는 기본적인 CT slice인 axial 평면만을 기반으로 모델을 개발하고 있다. CT 영상은 일반 이미지와 다르게 인체 구조만 묘사하기 때문에 CT scan을 재구성하는 것만으로도 더 풍부한 신체적 특징을 나타낼 수 있다. 이 연구는 axial 평면뿐만 아니라 CT 데이터를 2D로 변환하는 여러가지 방법들을 통해 보다 높은 성능을 달성할 수 있는 방법을 찾고자 한다. 훈련은 5가지 부위의 CT 스캔 1042개를 사용했고, 모델 평가를 위해 테스트셋 179개, 외부 데이터셋으로 448개를 수집했다. 딥러닝 모델 개발을 위해 ImageNet으로 사전 학습된 InceptionResNetV2를 백본으로 사용하였으며, 모델의 전체 레이어를 재 학습했다. 실험결과 신체 부위 분류에서는 재구성 데이터 모델이 99.33%를 달성하며 axial 모델보다 1.12% 더 높았고, 조영제 분류에서는 brain과 neck에서만 axial모델이 높았다. 결론적으로 axial slice로만 훈련했을 때 보다 해부학적 특징이 잘 나타나는 데이터로 학습했을 때 더 정확한 성능 달성이 가능했다.
실생활의 사례를 바탕으로 생성된 여러 분야의 데이터셋을 기계학습 (Machine Learning) 문제에 적용하고 있다. 정보보안 분야에서도 사이버 공간에서의 공격 트래픽 데이터를 기계학습으로 분석하는 많은 연구들이 진행 되어 왔다. 본 논문에서는 공격 데이터를 유형별로 정확히 분류할 때, 실생활 데이터에서 흔하게 발생하는 데이터 불균형 문제로 인한 분류 성능 저하에 대한 해결방안을 연구했다. 희소 클래스 관점에서 데이터를 재구성하고 기계학습에 악영향을 끼치는 특징들을 제거하고 DNN(Deep Neural Network) 모델을 사용해 분류 성능을 평가했다.
휴먼 행동 인식은 크게 3D 모델 기반 방법과 템플릿 기반 방법으로 나눌 수 있다. 3D 모델 기반 방법은 휴먼의 포즈를 3D로 재구성한 뒤 특징을 추출하는 것으로 인식 정확도는 높으나 연산량이 많아 매우 비효율적이다. 반면 템플릿 기반의 방법은 간단하고 수행 시간이 빠르기 때문에 여러 논문들에서 채택되고 있다. 그러나 템플릿을 이용한다는 특성 때문에 시점, 행동 스타일의 변화 등에 따라 실루엣의 변화가 심해 인식 성능에 한계점을 가진다. 본 논문에서는 핵심-포즈들의 히스토그램으로 표현되는 핵심-포즈 분포와 광류의 변화를 이용하여 다중 시점에서의 휴먼 행동 인식 방법을 제안한다. 제안하는 방법은 IXMAS 데이터 셋을 이용한 실험에서 적은 수의 템플릿을 이용하면서도 평균 87.9%의 높은 인식률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.