클라우드와 빅네이터의 새로운 시대에서 필요한 데이터를 방대한 데이터 풀로부터 어떻게 찾아내고 활용하느냐는 매우 중요한 일이다. 이러한 빅데이터의 시대에는 무엇보다도 방대하고도 변화무쌍한 데이터를 잘 처리하고 유용한 정보를 신속하게 획득할 수 있는 진화된 형태의 효율적 지능적 지식시스템 설계를 필요로 한다. 따라서 본 연구에서는 진화된 지능 시스템 연구의 하나로서 구조적으로 재구성될 수 있는 동적 개인적 지식네트워크를 제안하고자 한다. 작은 공간에 큰 세계를 매핑하여 효율적으로 처리할 수 있는 인간 두뇌의 기능과 이 안에서 일어나는 뉴로다이나믹스 메커니즘에 착안하여 구조적 유연성을 갖는 지능 시스템을 설계하였다. 서로 다른 네트워크의 구조적-기능적 결합이 가능하도록 개인 지식네트워크를 구조화하고 핵심 영역에 속하는 공통 노드를 찾아 결합을 하며 재구성하는 기능을 부여하였다. 또한 시스템이 재구성된 지식네트워크로부터 최적 경로를 추출하며 추출된 경로를 가지고 추론 프로세스를 진행하는 기능 갖도록 구상하였다.
지난 십 년간 랭킹은 데이터 마이닝 분야의 활발한 연구분야였다. 그러나 랭킹은 다른 데이터 마이닝 기법들과 비슷하게 RDBMS와는 독립적으로 개발되었고, 그로 인해 기존에 널리 사용되고 있는 RDBMS들과의 연동성이 떨어진다는 단점이 존재하게 되었다. 다른 데이터 마이닝 기법들은 소결합이나 밀결합 접근법을 이용하여 RDBMS와 연동하기 위한 연구가 활발하게 진행되어 왔고, 그 결과 실제로 사용 가능한 응용시스템들이 나오게 되었다. 그러나 랭킹에서는 이와 같은 노력들이 잘 이루어지지 않고 있다. 본 논문에서는 랭킹 작업을 RDBMS에 연동하여 효율적으로 수행하기 위하여 MySQL에 Ranking SVM을 통합하는 작업을 진행하였다. 밀결합 접근법을 기반으로 하는 우리의 구현은 MySQL에 랭킹을 위한 새로운 SQL 명령어를 추가하였고 랭킹 작업의 효율성을 확인하기 위해서 소결합 접근법을 기반으로 하는 Ranking SVM과 성능을 비교 평가하여 훈련단계에서 $10{\sim}40%$, 예측단계에서 평균 60%의 성능향상을 확인할 수 있었다.
최근 철도 서비스를 개선하고자 기존선을 복선 및 전철화 하는 등 철도네트워크 기능강화사업이 활발히 추진되고 있다. 이를 배경으로 본 논문에서 급행철도와 같이 새로운 철도 운영서비스가 제공될 경우 타 교통수단으로부터 얼마의 전환수요가 발생될 것이며, 철도이용형태는 어떻게 변화될 것인지? 등 앞으로 건설될 대구권 광역철도를 대상으로 SP와 RP데이터에 의한 전환수요 예측방법의 적용성을 검토하였다. 모형 구축결과, 기존 SP와 RP데이터를 결합하는 동시적 모형과 순차적 모형이 모두 유용하여 총통행시간과 통행비용의 파라미터 추정치가 충분한 설명력을 나타내고 있으며, 동시적 방법이 보다 효율적으로 분석되었다. 특히 RP+SP의 결합모형의 타당성을 더욱 높이기위해서 RP데이터를 비례적으로 적용한다면, 철도요금과 통행시간 설정에 따라 전환수요를 쉽게 파악할 수 있을 것이며, 대구권 광역철도를 비롯하여 타 지역에서도 보다 실용적으로 적용할 수 있을 것으로 판단된다.
국내 빅데이터 산업 활성화를 위해 2016년 6월 정부부처 합동으로 개인정보 비식별 조치 가이드 라인을 발간하였다. 이 가이드라인은 현행 개인정보보호 관련 법령 하에서 개인정보를 보호하면서 사업자의 빅데이터 분석을 보다 활성화하고자 하려는 목적이 있다. 이 가이드라인은 국내의 엄격한 개인정보보호법 하에서 전자정부 선진국을 위한 정보환경을 조성하고자 하는 것이다. 다만, 이러한 가이드라인의 내용 중 비식별 조치 절차, 제도 및 정보집합물 결합 방법에 불합리한 부분이 있다면 빅데이터 산업 활성화의 걸림돌이 될 수 있다. 따라서 본 논문에서는 가이드라인의 비식별 조치 및 결합 방법 및 절차 중 개선이 필요하다고 생각되는 적정성 평가, 비식별 조치 지원 및 결합 임시대체키 생성 방법을 살펴보고 각각에 대해 해결 방안을 제시한다. 그리고 이러한 해결 방안이 어떻게 핀테크 산업 활성화에 도움이 되는지 알아본다.
본 연구에서는 COVID-19의 영향과 온라인 시장을 중심으로 구매패턴이 변화하는 현 경영환경의 시대에서 온라인 배송업체의 구매정보와 상품정보를 기반으로 군집분석과 연관성 분석을 실시하였다. 고객군집, 상품군집, 그리고 교차결합을 통해 데이터를 세분화시켜 결합군집을 생성하여 학문적으로 새로운 방안의 군집분석을 시도하였으며, 각각의 군집분석 결과를 토대로 연관성 분석을 하였다. 연관성 분석 결과, 상대적으로 결합군집에서 더 많은 연관 규칙이 도출 되었으며, 중복률은 더 적은 것으로 분석되어 효율성이 매우 높은 것으로 나타났다. 이는 고객의 니즈에 맞게 상품을 추천하기 위해서는 결합군집이 가장 적합한 모델이라고 판단된다. 결합군집 모델은 소비자에겐 시간 절약과 유용한 정보를 제공하면서, 해당 업체에는 판매량을 증가시키는 등의 긍정적인 효과를 가져올 것으로 사료된다. 향후 연구과제로써, 다양한 특성을 갖고 있는 다수의 온라인 배송업체들을 대상으로 비교·분석한다면 좀 더 명확하고 유의미한 연구결과를 도출할 수 있을것으로 기대된다.
합성곱 신경망은 이미지와 같은 격자 형태로 배열된 데이터를 다루는데 널리 사용되고 있는 신경망이다. 일반적인 합성곱 신경망은 합성곱층과 완전연결층으로 구성되며 각 층은 비선형활성함수를 포함하고 있다. 본 논문은 합성곱 신경망의 성능을 향상시키기 위해 결합된 파라메트릭 활성함수를 제안한다. 결합된 파라메트릭 활성함수는 활성함수의 크기와 위치를 변환시키는 파라미터를 적용한 파라메트릭 활성함수들을 여러 번 더하여 만들어진다. 여러 개의 크기, 위치를 변환하는 파라미터에 따라 다양한 비선형간격을 만들 수 있으며, 파라미터는 주어진 입력데이터에 의해 계산된 손실함수를 최소화하는 방향으로 학습할 수 있다. 결합된 파라메트릭 활성함수를 사용한 합성곱 신경망의 성능을 MNIST, Fashion MNIST, CIFAR10 그리고 CIFAR100 분류문제에 대해 실험한 결과, 다른 활성함수들보다 우수한 성능을 가짐을 확인하였다.
본 논문에서는 수중 음향통신에서 데이터 복구를 위한 위상고정루프와 결합된 등화기의 성능을 분석하였다. 도플러 주파수가 존재하는 채널환경에서는 등화기 동작만으로는 데이터 복구가 어렵다. 도플러 주파수를 복구하기 위해 등화기는 위상고정루프를 결합하여 사용한다. 등화기와 위상고정루프는 각각 채널의 다중경로와 도플러 주파수를 보상하면서 맞물려 동작하게 된다. 또한, 고속 푸리에 변환을 통해 얻은 초기 주파수 오차를 보상하면, 위상고정루프와 결합된 등화기의 수렴속도를 향상시킬 수 있다. 성능 검증을 위해 호수실험과 해상실험을 진행하였다. 결과적으로, 도플러 주파수의 보상 유무와 상관없이 위상고정루프와 결합된 등화기는 프리엠블 구간에서 충분히 수렴하며, 랜덤 데이터 구간에서 비트오류는 발생하지 않았다. 그러나, 도플러 주파수의 보상을 통해 등화기의 수렴 속도를 2배 이상 증가시킬 수 있었다.
유체 모델을 기반으로 하는 국내의 유도 결합 플라즈마원의 시뮬레이터 개발 현황을 정리하였다. 전체 시뮬레이터를 구성하는 각 부분으로서, 전자 가열, 하전 입자 및 중성종 수송, sheath를 포함한 표면 반응, 그리고 GUI (Graphic User Interface) 및 전후처리기 등의 순으로 설명되었다. 현재까지 시뮬레이터에 구현된 화학 반응 데이터와 swarm 데이터도 정리하여 보았고, 앞으로의 개발 방향을 전망하여 보았다.
본 논문에서는 컨볼루션 신경회로망(CNN: Convolutional Neural Network)과 다양한 분류기들의 결합을 통해 분류성능을 비교하고자 한다. 현재 일반적인 분류기로 알려진 것은 나이브 베이즈(Naive bayes), 트리(Tree), 판별 분석(Discriminant Analysis), 서포트 벡터 머신(SVM: Support Vector Machine) 등이 존재한다. 분류기들은 각각 다른 원리로 분류하기 때문에, 각각 성능을 비교해볼 필요가 있다. 분류기들의 성능을 비교하기 위한 사용한 데이터는 CNN에서 자주 사용되고 있는 MNIST 데이터를 사용하였다. 실험 결과로는 CNN에 선형 SVM을 결합하여 사용한 것이 분류율과 분류속도 측면에서 다른 분류기들의 성능보다 좋은 성능을 보이는 것을 확인할 수 있었다.
본 논문에서는 인간 행동의 성별 인식문제를 해결하기 위해 여러 개의 전문가(expert) 신경망의 앙상블로 이루어진 결합 신경망 분류기를 제안한다. 하나는 여러 개의 modular 다층퍼셉트론을 계층형으로 결합한 모텔이고, 다른 하나는 modular 다층퍼셉트론들의 출력값을 의사결정트리로 결합하는 모델이다. 데이터 베이스는 남녀 각 13 명의 데이터로 이루어져 있고, 문 두드리기, 손 흔들기, 물건 들어올리기의 세 가지 동작을, 보통 상태 혹은 화난 상태하에서 10 회씩 반복 수행하여 저장하였다. 행위자의 움직임은 몸에 부착된 6 개의 적외선 센서를 사용하여 기록 되었으며, 2 차원 혹은 3 차원 속도 및 좌표가 그 특징값으로 사용되었다. 앙상블 분류기의 성능을 비교하기 위하여 단일 다층퍼셉트론, 의사결정트리, 자기구성지도 및 support vector machine 을 사용한 실험 결과를 보였다. 실험 결과, 신경망 앙상블 모델이 다른 전통적인 분류기 및 사람에 비하여 훨씬 우수한 성능을 보였음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.