DOI QR코드

DOI QR Code

Design of customized product recommendation model on correlation analysis when using electronic commerce

전자상거래 이용시 연관성 분석을 통한 맞춤형 상품추천 모델 설계

  • Yang, MingFei (Management Information System, Chungbuk National University) ;
  • Park, Kiyong (Department of Big Data, Chungbuk National University) ;
  • Choi, Sang-Hyun (Management Information System, Department of Big Data, Chungbuk National University)
  • ;
  • 박기용 (충북대학교 빅데이터협동과정) ;
  • 최상현 (충북대학교 빅데이터협동과정)
  • Received : 2021.11.09
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

In the recent business environment, purchase patterns are changing around the influence of COVID-19 and the online market. This study analyzed cluster and correlation analysis based on purchase and product information. The cluster analysis of new methods was attempted by creating customer, product, and cross-bonding clusters. The cross-bonding cluster analysis was performed based on the results of each cluster analysis. As a result of the correlation analysis, it was analyzed that more association rules were derived from a cross-bonding cluster, and the overlap rate was less. The cross-bonding cluster was found to be highly efficient. The cross-bonding cluster is the most suitable model for recommending products according to customer needs. The cross-bonding cluster model can save time and provide useful information to consumers. It is expected to bring positive effects such as increasing sales for the company.

본 연구에서는 COVID-19의 영향과 온라인 시장을 중심으로 구매패턴이 변화하는 현 경영환경의 시대에서 온라인 배송업체의 구매정보와 상품정보를 기반으로 군집분석과 연관성 분석을 실시하였다. 고객군집, 상품군집, 그리고 교차결합을 통해 데이터를 세분화시켜 결합군집을 생성하여 학문적으로 새로운 방안의 군집분석을 시도하였으며, 각각의 군집분석 결과를 토대로 연관성 분석을 하였다. 연관성 분석 결과, 상대적으로 결합군집에서 더 많은 연관 규칙이 도출 되었으며, 중복률은 더 적은 것으로 분석되어 효율성이 매우 높은 것으로 나타났다. 이는 고객의 니즈에 맞게 상품을 추천하기 위해서는 결합군집이 가장 적합한 모델이라고 판단된다. 결합군집 모델은 소비자에겐 시간 절약과 유용한 정보를 제공하면서, 해당 업체에는 판매량을 증가시키는 등의 긍정적인 효과를 가져올 것으로 사료된다. 향후 연구과제로써, 다양한 특성을 갖고 있는 다수의 온라인 배송업체들을 대상으로 비교·분석한다면 좀 더 명확하고 유의미한 연구결과를 도출할 수 있을것으로 기대된다.

Keywords

References

  1. J. M. Lee. (2020). A Study of Diners' Purchase Association Rule Using Data Mining Methods. Doctoral dissertation. KH University, Seoul.
  2. M. J. Shaw, C. Subramaniam, G. W. Tan & M. E. Welge. (2001). Knowledge management and data mining for marketing. Decision support systems, 31 (1), 127-137. https://doi.org/10.1016/S0167-9236(00)00123-8
  3. S. S. Oh. (2018). A Study on the Customer Profile based Recommendation System using Association Rules Analysis for Online Duty Free Stores. Master's Degree. IH University, Incheon.
  4. D. S. Jin & J. W. Lee. (2012). Impacts of Social Commerce in E-commerce: In perspective of Social Commerce Analysis Model. Korea Association for International Commerce and Information, 14(1), 369-390.
  5. Korea Information Society Development Institute. (2020). Analysis of changes in e-commerce usage behavior due to COVID-19. [Brochure]. Jincheon : Y. S. Oh.
  6. C. Lin. (2021). Implementation of E-commerce Personalized Recommendation System Based on Web Data Mining. Doctoral dissertation. HN University, Gwangju.
  7. B. C. Jang. (2002). A study on multi-criteria individualized commodity recommendation in e-shopping mall. Master's Degree. SKK University, Seoul.
  8. S. S. Kim. (2012). An improved product recommender system based on association rules using extended information sources. Master's Degree. KM University, Seoul.
  9. E. S. Won & S. Y. Kim. (2020). An Analysis of Consumers Purchasing Patterns for Fresh Food Products Using Association Rules. Journal of Agriculture & Life Sciences, 54(4), 111-122.
  10. J. P. Ryu & H. J. Shin. (2021). Big Data Analysis of Financial Product Transaction Trends Using Associated Analysis. Journal of the Korea Convergence Society, 12(12), 49-57. https://doi.org/10.15207/JKCS.2021.12.12.049
  11. Y. B. Cho, J. H. Jun & B. Choi. (2019). A Methodology for Improving fitness of the Latent Growth Modeling using Association Rule Mining. Journal of the Korea Convergence Society, 10 (2), 217-225. https://doi.org/10.15207/JKCS.2019.10.2.217
  12. J. M. Park, K. R. Park & Y. S. Chung. (2018). Analysis of relationship between frequency of crime occurrence and frequency of web search. Journal of the Korea Convergence Society, 9(5), 15-20. https://doi.org/10.15207/JKCS.2018.9.5.015
  13. D. H. Shin, M. J. Kim, S. Y. Oh & K. Chung. (2019). Knowledge Reasoning Model using Association Rules and Clustering Analysis of Multi-Context. Journal of the Korea Convergence Society, 10(9), 11-16. https://doi.org/10.15207/JKCS.2019.10.9.011
  14. S. Y. Yoon. (2018). A study on the importance of clustering in prediction model construction: Through consumer case analysis. Master's Degree. HS University, Asan.
  15. D. H. Kim. (2018). A Study on the Customer Segmentation Using Purchase History Big Data for Target Marketing. Master's Degree. SK University, Seoul.
  16. M. U. An, E. S. Won, S. Y. Kim & D. H. Yoo. (2019). Development of Sales Strategies for Agricultural Products Using Lift-based Association Rules Network: A Focus on Large Supermarkets and Traditional Markets. Korea Internet Electrornic Commerce Association, 19 (3), 105-127.
  17. M. R. Anderberg. (1973). Cluster analysis for applications. New York : Academic Press.
  18. J. W. Jo. (2006). Classification Analysis by Using the K-Means Clustering. Master's Degree. JA University, Seoul.
  19. H. Y. Woo & C. H. Park. (2013). Active Learning based on Hierarchical Clustering. Korea Information Processing Society, 2(10), 705-712.
  20. G. Shmueli, N. R. Patel & P. C. Bruce. (2011). Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner. John Wiley & Sons.
  21. J. Jeon. (2015). Verification for patent data clustering based on text-mining. Master's Degree. SKK University, Seoul.
  22. Y. S. Lee, P. They, J. H. Lee & J. M. Kil. (2018). A Study on Research Paper Classification Using Keyword Clustering. Korea Information Processing Society, 7(12), 477-484.
  23. J. M. Ko, K. S. Jang & D. J. Hwang. (2005). Understanding and Using Data Mining. Ulsan : USU Press.
  24. J. Y. Park, T. W. Lee, C. L. Wang & T. H. Hong. (2012). Data Mining for Relationship Recommendation in Social Networks. The Korea Society of Management Information Systems Conference, 2012(1), 508-512.
  25. K. S. Nam, H. J. Kim & J. H. Oh. (2002). Analysis for simultaneous activities using the data mining's association rule. Korea Social Research Center, 17 (1), 37-156.
  26. J. S. Kim, Y. A. Do, J. W. Ryu & M. W. Kim. (2001). A Collaborative Recommendation System Using Neural Networks for Increment of Performance. The Korean Brain Society, 1(2), 233-244.
  27. H. Bak, J. H. Kim & Y. J. Kim. (2013). An Analysis for Deriving New Convergent Service of Mobile Learning : The Case of Social Network Analysis and Association Rule. The Korea Society of Management Information Systems, 15(3), 1-37.
  28. H. C. Ahn, I. K. Han & K. J. Kim. (2006). The Product Recommender System Combining Association Rules and Classification Models: The Case of G Internet Shopping Mall. The Korea Society of Management Information Systems, 8(1), 181-201.
  29. D. Wielenga, B. Lucas & J. Georges. (1999). Enterprise Miner: Applying Data Mining Techniques Course Note, SAS Institute Inc, Cary, NC.